|
|
Generator Strategic Bidding Based on Bounded Rationality Model of BSV and Breakpoints Optimization |
Liu Congcong1,2, Li Zhengshuo1,2, Zhang Li1,2, Han Xueshan1,2, Lü Tianguang1,2 |
1. School of Electrical Engineering Shandong University Jinan 250061 China; 2. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education Shandong University Jinan 250061 China |
|
|
Abstract In the real-time market, generators can improve their profits through strategic bidding. In the classic strategic bidding model, generators optimize their own bidding strategies by estimating opponents' bidding behaviors. However, the model usually assumes that opponents' bidding behaviors obey a particular probability distribution. Therefore, how to reasonably estimate opponents' bidding behavior, remains to be further studied. In this regard, this paper improves the classic strategic bidding model of generators. By constructing a behavioral model of opponents based on the "bounded rationality model of Barberis, Shleifer, and Vishny (BSV)", the model reflects the reality that opponents are "realistic men" and have cognitive biases, in order to further improve the rationality of the bidding strategy. Firstly, the bidding behavior model of the opponents is established by the bounded rationality model of BSV. Then, a bi-level optimization model is established for the generator to yield an optimal bidding strategy. The upper-level model is a bidding decision model that considers the bidding curve's "breakpoints optimization". The lower-level model is a market clearing model of the independent system operator (ISO), which considers the bidding behaviors of opponents. The lower-level model gives feedback to the upper-level model on the expected winning power output and the nodal price of the generator in the market under different bidding strategies. The bi-level optimization model can be transformed into a single-level optimization problem through methods such as Karush-Kuhn-Tucker (KKT) conditions, strong duality theorem, and special ordered sets. The transformed model is a mixed integer linear programming problem and can be directly solved by solvers. Simulation results show that, when adopting the generator strategic bidding model based on the bounded rationality model, the profit of the generator is 20%~30% higher than the classical strategic bidding model, which illustrates the rationality of the bounded rationality model of BSV to estimate the opponents' behaviors. Meanwhile, when considering the breakpoints optimization, the generator's profit increases from $12.7 to $83, which proves that it can further improve the generator's profit. When a strategic generator is a marginal unit, the generator adjusts the bidding price of the winning segment to a price slightly lower than the lowest bidding price of the unsuccessful segment; otherwise, the generator adjusts the bidding price to any value between the cost and the clearing price. And the bidding price of the unsuccessful segment needs to be higher than or equal to the cost. Finally, a sensitivity analysis of the bounded rationality model's parameters and the segments' upper limit is performed, and the generator's estimation accuracy will affect the generator's bidding strategy with a computational cost of less than 30 s, which can satisfy the normal bidding process. The following conclusions can be drawn from the simulation analysis: (1) The proposed model adopts the bounded rationality model to describe the bidding behaviors of different opponents more rationally, and develops a tailored bidding strategy. (2) Compared with the classical strategic bidding models that estimate the opponents are non-strategic bidding or strategic bidding, the proposed model improves the rationality of the generator's bidding strategy. (3) The proposed model can effectively adjust the total number of segments, segment capacities, and bidding prices of the generator's supply curve by breakpoints optimization strategy, further increasing the profit.
|
Received: 04 May 2022
|
|
|
|
|
[1] 贾乾罡, 陈思捷, 李亦言, 等. 有限信息环境下基于学习自动机的发电商竞价策略[J]. 电力系统自动化, 2021, 45(6): 133-139. Jia Qiangang, Chen Sijie, Li Yiyan, et al.Learning automata based bidding strategy for power suppliers in incomplete information environment[J]. Automation of Electric Power Systems, 2021, 45(6): 133-139. [2] Kirschen D, Strbac G.Fundamentals of power system economics[M]. New Jersey: Wiley, 2004. [3] 罗桓桓, 王昊, 葛维春, 等. 考虑报价监管的动态调峰辅助服务市场竞价机制设计[J]. 电工技术学报, 2021, 36(9): 1935-1947, 1955. Luo Huanhuan, Wang Hao, Ge Weichun, et al.Design of dynamic peak regulation ancillary service market bidding mechanism considering quotation supervision[J]. Transactions of China Electrotechnical Society, 2021, 36(9): 1935-1947, 1955. [4] 徐湘楚, 米增强, 詹泽伟, 等. 考虑多重不确定性的电动汽车聚合商参与能量-调频市场的鲁棒优化模型[J]. 电工技术学报, 2023, DOI:10.19595/j.cnki. 1000-6753.tces.220597. Xu Xiangchu, Mi Zengqiang, Zhan Zewei, et al.A robust optimization model for electric vehicle aggregator participation in energy and frequency regulation markets considering multiple uncertainties[J]. Transactions of China Electrotechnical Society, 2023, DOI:10.19595/j.cnki.1000-6753.tces.220597. [5] 张谦, 邓小松, 岳焕展, 等. 计及电池寿命损耗的电动汽车参与能量-调频市场协同优化策略[J]. 电工技术学报, 2022, 37(1): 72-81. Zhang Qian, Deng Xiaosong, Yue Huanzhan, et al.Coordinated optimization strategy of electric vehicle cluster participating in energy and frequency regulation markets considering battery lifetime degradation[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 72-81. [6] 张宏图, 熊志杰, 朱燕梅, 等. 基于“虚拟水库”的梯级水电现货报价单元组建方法[J]. 电工技术学报, 2022, 37(3): 719-728. Zhang Hongtu, Xiong Zhijie, Zhu Yanmei, et al.Spot quotation unit construction method of cascade hydropower based on “virtual reservoir”[J]. Transactions of China Electrotechnical Society, 2022, 37(3): 719-728. [7] 姜欣, 刘萌, 王天梁, 等. 电网侧储能电站参与现货联合市场的竞价策略[J]. 电网技术, 2021, 45(9): 3398-3408. Jiang Xin, Liu Meng, Wang Tianliang, et al.Bidding strategy for grid-side energy storage power stations to participate in the spot joint market[J]. Power System Technology, 2021, 45(9): 3398-3408. [8] 田亮, 谢云磊, 周桂平, 等. 基于两阶段随机规划的热电机组深调峰辅助服务竞价策略[J]. 电网技术, 2019, 43(8): 2789-2798. Tian Liang, Xie Yunlei, Zhou Guiping, et al.Deep peak regulation ancillary service bidding strategy for CHP units based on two-stage stochastic programming[J]. Power System Technology, 2019, 43(8): 2789-2798. [9] 艾欣, 周树鹏, 赵阅群. 含虚拟发电厂的电力系统优化运行与竞价策略研究[J]. 中国电机工程学报, 2016, 36(23): 6351-6362, 6600. Ai Xin, Zhou Shupeng, Zhao Yuequn.Research on optimal operation and bidding strategy of power system with virtual power plants[J]. Proceedings of the CSEE, 2016, 36(23): 6351-6362, 6600. [10] Malkiel B G, Fama E F.Efficient capital markets: a review of theory and empirical work[J]. The Journal of Finance, 1970, 25(2): 383-417. [11] 饶育蕾, 彭叠峰, 盛虎. 行为金融学[M]. 2版. 北京: 机械工业出版社, 2018. [12] Shleifer A.Inefficient markets: an introduction to behavioral finance[M]. Oxford: Oxford University Press, 2000. [13] 叶畅, 苗世洪, 刘昊, 等. 联盟链框架下主动配电网电力交易主体合作演化策略[J]. 电工技术学报, 2020, 35(8): 1739-1753. Ye Chang, Miao Shihong, Liu Hao, et al.Cooperative evolutionary game strategy for electricity trading stakeholders in active distribution network under consortium blockchain framework[J]. Transactions of China Electrotechnical Society, 2020, 35(8): 1739-1753. [14] 程乐峰, 余涛. 发电市场长期竞价均衡自发形成过程中的一般多策略演化博弈决策行为研究[J]. 中国电机工程学报, 2020, 40(21): 6936-6956. Cheng Lefeng, Yu Tao.Decision-making behavior investigation for general multi-strategy evolutionary games in the spontaneous formation of long-term bidding equilibria of a power generation market[J]. Proceedings of the CSEE, 2020, 40(21): 6936-6956. [15] 吕泉. 基于有限理性的发电商竞价决策研究[D]. 大连: 大连理工大学, 2008. [16] 刘一谷, 高仕斌, 韦晓广, 等. 电力物联网下考虑社会行为的产消者交易模型研究[J]. 中国电机工程学报, 2021, 41(9): 3173-3187. Liu Yigu, Gao Shibin, Wei Xiaoguang, et al.Research on trading model of prosumers considering the social behaviors in the power Internet of Things[J]. Proceedings of the CSEE, 2021, 41(9): 3173-3187. [17] 王丹, 赵平, 师二广, 等. 基于有限理性决策的分布式风电开发模式[J]. 电力系统自动化, 2018, 42(20): 31-37. Wang Dan, Zhao Ping, Shi Erguang, et al.Distributed wind power development mode based on bounded rational decision[J]. Automation of Electric Power Systems, 2018, 42(20): 31-37. [18] Jasper J D, Christman S D.A neuropsychological dimension for anchoring effects[J]. Journal of Behavioral Decision Making, 2005, 18(5): 343-369. [19] Barberis N, Shleifer A, Vishny R.A model of investor sentiment[J]. Journal of Financial Economics, 1998, 49(3): 307-343. [20] 国家能源局山东监管办公室. 关于修订《山东省电力现货市场交易规则(试行)》《山东省电力中长期市场交易规则(试行)》《山东省电力零售市场交易规则(试行)》的通知[Z]. 2020. [21] 陈永权, 肖湘宁, 宋永华. 考虑报价经验的发电商竞价策略模型[J]. 中国电机工程学报, 2009, 29(25): 71-77. Chen Yongquan, Xiao Xiangning, Song Yonghua.Bidding strategy model for generation companies considering bidding experiences[J]. Proceedings of the CSEE, 2009, 29(25): 71-77. [22] 窦迅, 张盼, 李建安, 等. 不同资质的售电公司购售电策略分析[J]. 中国电机工程学报, 2020, 40(增刊1): 181-187. Dou Xun, Zhang Pan, Li Jian'an, et al. Analysis of power purchase-sale strategy of power retail companies with[J]. Proceedings of the CSEE, 2020, 40(S1): 181-187. [23] 窦春霞, 罗维, 岳东, 等. 基于多智能体的微网群内电力市场交易策略[J]. 电网技术, 2019, 43(5): 1735-1744. Dou Chunxia, Luo Wei, Yue Dong, et al.Multi-agent system based electricity market trading strategy within microgrid groups[J]. Power System Technology, 2019, 43(5): 1735-1744. [24] 章艳, 吕泉, 张娜, 等. 计及灵活性提升的热电厂日前市场竞价策略[J]. 电力系统自动化, 2021, 45(6): 140-147. Zhang Yan, Lyu Quan, Zhang Na, et al.Bidding strategy of day-ahead market for combined heat and power plant considering flexibility improvement[J]. Automation of Electric Power Systems, 2021, 45(6): 140-147. [25] Baringo L, Conejo A J.Offering strategy via robust optimization[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1418-1425. [26] 殷爽睿, 艾芊, 姜子卿, 等. 需求侧综合能源站实时市场竞标与能量管理协同优化策略[J]. 中国电机工程学报, 2021, 41(13): 4490-4502. Yin Shuangrui, Ai Qian, Jiang Ziqing, et al.Collaborative optimal strategy of real-time market bidding and energy management for integrated energy station on the demand side[J]. Proceedings of the CSEE, 2021, 41(13): 4490-4502. [27] Yu Ankun, Zhang Chaorui, Zhang Y J A. Optimal bidding strategy of prosumers in distribution-level energy markets[J]. IEEE Transactions on Power Systems, 2020, 35(3): 1695-1706. [28] Xiao Ying, Su Qianli, Wang Xing, et al.Impact of price responsive demand on PJM real-time/look-ahead markets[C]//2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 2011: 1-9. [29] Kohansal M, Mohsenian-Rad H.A closer look at demand bids in California ISO energy market[J]. IEEE Transactions on Power Systems, 2016, 31(4): 3330-3331. [30] Baringo L, Conejo A J.Offering strategy of wind-power producer: a multi-stage risk-constrained approach[J]. IEEE Transactions on Power Systems, 2015, 31(2): 1420-1429. [31] Ruiz C, Conejo A J.Pool strategy of a producer with endogenous formation of locational marginal prices[J]. IEEE Transactions on Power Systems, 2009, 24(4): 1855-1866. [32] 江苏电力交易中心. 2022年6月江苏电力市场集中竞价交易结果公示[EB/OL]. [2022-6-1]. https:// www.jspec.com.cn/#/pxf-js-outer-infopub/file/JYGG. [33] Gu Yuxuan, Zheng Kedi, Wang Yi, et al.An online approach for partial topology recovery in LMP markets[J]. International Journal of Electrical Power & Energy Systems, 2022, 134: 107384. [34] Birge J R, Hortaçsu A, Pavlin J M.Inverse optimization for the recovery of market structure from market outcomes: an application to the MISO electricity market[J]. Operations Research, 2017, 65(4): 837-855. [35] Geng Xinbo, Xie Le.Learning the LMP-load coupling from data: a support vector machine based approach[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1127-1138. [36] Padmanabhan N, Ahmed M, Bhattacharya K.Simultaneous procurement of demand response provisions in energy and spinning reserve markets[J]. IEEE Transactions on Power Systems, 2018, 33(5): 4667-4682. [37] 谢开. 美国电力市场运行与监管实例分析[M]. 北京: 中国电力出版社, 2017. [38] 张妍, 陈启鑫, 郭鸿业, 等. 引入投资决策的电力容量市场均衡分析[J]. 电力系统自动化, 2020, 44(20): 11-18. Zhang Yan, Chen Qixin, Guo Hongye, et al.Equilibrium analysis of power capacity market incorporating investment decision[J]. Automation of Electric Power Systems, 2020, 44(20): 11-18. [39] 林晓凡, 曾佳妮, 冯冬涵. 可再生能源消纳责任权重制下电力市场优化决策模型[J]. 电力系统自动化, 2021, 45(6): 158-168. Lin Xiaofan, Zeng Jiani, Feng Donghan.Optimization decision model of electricity market under renewable portfolio standards[J]. Automation of Electric Power Systems, 2021, 45(6): 158-168. [40] 郝然, 艾芊, 姜子卿. 区域综合能源系统多主体非完全信息下的双层博弈策略[J]. 电力系统自动化, 2018, 42(4): 194-201. Hao Ran, Ai Qian, Jiang Ziqing.Bi-level game strategy for multi-agent with incomplete information in regional integrated energy system[J]. Automation of Electric Power Systems, 2018, 42(4): 194-201. [41] Fang Xin, Hu Qinran, Li Fangxing, et al.Coupon-based demand response considering wind power uncertainty: a strategic bidding model for load serving entities[J]. IEEE Transactions on Power Systems, 2016, 31(2): 1025-1037. [42] 冯忠楠, 文汀, 林湘宁, 等. 孤立发电系统参与电力市场的模式探讨[J]. 中国电机工程学报, 2021, 41(14): 4845-4857. Feng Zhongnan, Wen Ting, Lin Xiangning, et al.Discussions on the mode of isolated power generation system participating in electricity market[J]. Proceedings of the CSEE, 2021, 41(14): 4845-4857. [43] Kardakos E G, Simoglou C K, Bakirtzis A G.Optimal offering strategy of a virtual power plant: a stochastic Bi-level approach[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 794-806. [44] 杨晓兰, 张雪芳. 行为金融学[M]. 北京: 清华大学出版社, 2019. [45] Williams H P.Model building in mathematical programming[M]. 5th ed. Chichester, West Sussex: Wiley, 2013. [46] Fortuny-Amat J, McCarl B. A representation and economic interpretation of a two-level programming problem[J]. Journal of the Operational Research Society, 1981, 32(9): 783-792. [47] Wood A J, Wollenberg B F, et al.Power generation, operation, and control[M]. 3th ed. New Jersey: Wiley, 2017. [48] 蔡健琦. 基于BSV、DHS和HS模型的证券市场反应行为理论与实证研究[D]. 杭州: 浙江大学, 2004. [49] 赵鼎新. 集体行动、搭便车理论与形式社会学方法[J]. 社会学研究, 2006, 21(1): 1-21, 243. Zhao Dingxin.Collective action, free-rider problem, and the application of formal models in social sciences[J]. Sociological Studies, 2006, 21(1): 1-21, 243. [50] Siddiqui S, Gabriel S A.An SOS1-based approach for solving MPECs with a natural gas market application[J]. Networks and Spatial Economics, 2013, 13(2): 205-227. |
|
|
|