|
|
Effect of Structural Design on Interruption Characteristics of Propellant-Assisted Interrupter |
Zhou Yutao, Zhuang Jinwu, Wu Jin, Yuan Zhifang, Zhang Chao |
College of Electric Engineering Naval University of Engineering Wuhan 430033 China |
|
|
Abstract The high-speed interrupter in the existing fuse is usually driven by shock wave generated by explosive detonation. There are some defects in the practical application of explosive, such as strong destructive power, high noise and high price. In addition, the structure design of explosive type interrupter is complex, and this type of interrupter is of large volume and heavy weight. Aiming at solving the problems of explosive type interrupter, this paper designs a new type of interrupter scheme, in which the propellant-assisted interrupter (PAI) works by burning. In order to improve the interruption charac-teristics of the new type of PAI, the thermoelectric coupling model and the non-linear dynamic model are established. The chamfering mode of insulation plate and the opening form of the silver sheet are optimized. The test scheme of hybrid current-limiting fuse based on PAI is designed. The interrupting test of the whole machine under the design of diamond and triangular openings is completed, and the test results are compared and analyzed. The experimental results show that the simulation model of the proposed interrupter is correct. Triangular opening can effectively reduce the breaking time of PAI and increase the interrupting arc voltage.
|
Received: 17 June 2019
Published: 12 March 2020
|
|
|
|
|
[1] 戴超. 舰船低压大电流电弧触发式混合型限流熔断器研究[D]. 武汉: 海军工程大学, 2010. [2] 江壮贤, 庄劲武, 王晨, 等. 基于电磁斥力原理的高速触头机构仿真分析与设计[J]. 电工技术学报, 2011, 26(8): 172-177. Jiang Zhuangxian, Zhuang Jinwu, Wang Chen, et al.Simulation analysis and design of a high speed contact mechanism based on electro-magnetic repulsion mechanism[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 172-177. [3] Roodenburg B, Taffone A, Gilardi E, et al.Combined ZVS-ZCS topology for high-current direct current hybrid switches: design aspects and first measurements[J]. Electric Power Applications, 2007, 1(2):183-192. [4] 李枫, 庄劲武, 武瑾,等. 基于液态金属自收缩效应的故障电流触发器[J]. 电工技术学报, 2017, 32(17): 95-101. Li Feng, Zhuang Jinwu, Wu Jin, et al.Liquid metal arc-trigger based on self-pinch effect[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 95-101. [5] 戴志辉, 葛红波, 严思齐,等. 柔性直流配电网故障分析[J]. 电工技术学报, 2018, 33(8):1863-1874. Dai Zhihui, Ge Hongbo, Yan Siqi, et al.Fault Analysis of flxible DC distribution system[J]. Transactions of China Electrotechnical Society, 2018, 33(8):1863-1874. [6] 庄劲武, 张晓锋, 杨锋, 等. 一种新型直流电网短路限流装置的设计与分析[J]. 海军工程大学学报, 2005, 17(4): 13-17. Zhuang Jinwu, Zhang Xiaofeng, Yang Feng, et al.Design and anaylsis of a new DC network current limiting device[J]. Naval University of Engineering, 2005, 17(4): 13-17. [7] 王晨, 庄劲武, 张晓锋,等. 基于IGBT的新型直流电力系统限流装置的工作原理与实验研究[J]. 电工技术学报, 2006, 21(9): 57-61. Wang Chen, Zhuang Jinwu, Zhang Xiaofeng, et al.Principle and test of a novel fault current limiter based on IGBT for DC power system[J]. Transactions of China Electrotechnical Society, 2006, 21(9): 57-61. [8] Hyun O B, Yim S W, Yu S D, et al.Long-term operation and fault tests of a 22.9 kV hybrid SFCL in the KEPCO test grid[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 2131-2134. [9] 张力, 阮江军, 黄道春,等. 双盘式线圈结构快速斥力机构设计与运动特性仿真研究[J]. 电工技术学报, 2018, 33(2): 255-264. Zhang Li, Ruan Jiangjun, Huang Daochun, et al.Study on the design and movement characteristics simulation of a fast repulsion mechanism based on double-coil structure[J]. Transactions of China Electrotechnical Society, 2018, 33(2):255-264. [10] 肖润龙, 王刚, 李子梦,等. 中压直流输电直流区域配电综合电力系统静态状态估计方法研究[J]. 电工技术学报, 2018, 33(13): 3023-3033. Xiao Runlong, Wang Gang, Li Zimeng, et al.Static estimation of the integrated power system with medium voltage DC and DC zonal distribution system[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3023-3033. [11] 戴超, 庄劲武, 杨锋, 等. 大容量爆炸活塞式高速开断器分析与优化设计[J]. 高电压技术, 2011, 37(1): 221-226. Dai Chao, Zhuang Jinwu, Yang Feng, et al.Analysis and optimum design of high-capacity high-speed interrupter[J]. High Voltage Engineering, 2011, 37(1): 221-226. [12] 徐国顺, 江壮贤, 庄劲武,等. 新型真空直流限流断路器设计及其介质恢复特性[J]. 电工技术学报, 2013, 28(2):171-177. Xu Guoshun, Jiang Zhuangxian, Zhuang Jinwu, et al.New DC vacuum current limiting circuit breaker and its dielectric recovery characteristics[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 171-177. [13] 杨锋, 张晓锋, 戴超, 等. 爆炸活塞式大电流高速限流开断装置的设计与分析[J]. 电力自动化设备, 2010, 30(4): 109-111. Yang Feng, Zhang Xiaofeng, Dai Chao, et al.Design and analysis of large-current high-speed interrupter based on explosive piston[J]. Electric Power Automation Equipment, 2010, 30(4): 109-111. [14] 陈搏, 庄劲武, 杨锋. 爆炸活塞式高速开关的分析与设计[J]. 武汉理工大学学报: 交通科学与工程版, 2010, 34(3): 468-471. Chen Bo, Zhuang Jinwu, Yang Feng.Design and test of a high speed explosively piston breaker[J]. Journal of Wuhan University of Technology: Transportation Science & Engineering, 2010, 34(3): 468-471. [15] 俞永华, 魏晓安, 廖昕. 含火药浆状炸药水分流动及控制[J]. 化工时刊, 2016, 30(4): 5-7, 23. Yu Yonghua, Wei Xiaoan, Liao Xin.Water drop and control on HJZ slurry explosive[J]. Chemical Industry Times, 2016, 30(4): 5-7, 23. [16] 王维德, 周叔良. 工业炸药和火药爆轰参数的快速计算法[J]. 世界采矿快报, 1993(12): 14-16. Wang Weide, Zhou Shuliang.A fast method for calculating detonation parameters of industrial explosives and propellants[J]. World Mining Express, 1993(12): 14-16. [17] 郭宏元. 火药炸药联合装药爆炸效应初探[D]. 合肥: 安徽理工大学, 2010. [18] 王雨时. 火炸药分类术语及其英语词汇汉译问题研究[J]. 火炸药, 1997(2): 47-49. Wang Yushi.A study on classification terminology of propellants and explosives and its english vocabulary translation into Chinese[J]. Explosive, 1997(2): 47-49. [19] 方昆凡. 工程材料手册.有色金属材料卷[M]. 北京: 北京出版社, 2002. [20] 宁远涛, 赵怀志.银[M]. 长沙: 中南大学出版社, 2015. [21] 张小兵. 枪炮内弹道学[M]. 北京: 北京理工大学出版社, 2004. [22] 白金泽. LS-DYNA 3D 理论基础与实例分[M]. 北京: 科学出版社, 2005. [23] 杨扬, 曾毅, 汪冰峰. 基于Johnson-Cook模型的TC16钛合金动态本构关系[J]. 中国有色金属学报, 2008, 18(3):505-510. Yang Yang, Zeng Yi, Wang Bingfeng.Dynamic constitutive relationship of TC16 titanium alloy based on Johnson-Cook model[J]. Journal of China Nonferrous Metals, 2008, 18(3):505-510. |
|
|
|