|
|
Operation and Sensorless Control of a Dual Stator Flux Modulation Electric Motor |
Luo Xiang1,2, Zhu Li1,2, Guo Canxin3 |
1. School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai 200240 China; 2. Key Laboratory of Control of Power Transmission and Conversion Ministry of Education Shanghai 200240 China; 3. PDStars Electric Co. Ltd Shanghai 201114 China |
|
|
Abstract This paper presents a dual stator flux-modulation electric motor (DSFM), which is based on the structure of magnetic gear by replacing the inner layer and outer layer of permanent magnets (PMs) with stator AC windings, and the middle layer is iron segments for flux-modulation. As the excitation magnetic field and armature magnetic field are both generated by the stator AC windings in DSFM, the amplitude, frequency and angle of the excitation magnetic field and armature magnetic field can be adjusted flexibly. Moreover, the functions of excitation magnetic field and armature magnetic field can be exchanged with each other. Therefore, the regulation range of the speed and torque in DSFM can be further improved. Additionally, as there is no PMs in the motor, DSFM has no problem of cogging torque. The structure and operation principle of DSFM are studied in this paper. Furthermore, sensorless control method based on sliding mode observer (SMO) for DSFM is realized in the paper. Finally, simulation and prototype tests are carried on to verify the operation principle and control theory of DSFM.
|
Received: 31 March 2019
Published: 12 March 2020
|
|
|
|
|
[1] Rens J, Clark R, Calverley S, et al.Design, analysis and realization of a novel magnetic harmonic gear[C]// International Conference on Electrical Machines, Vilamaura, Portugal, 2008, DOI: 10.1099/ICELMACH. 20084800163. [2] Wang L L, Shen J X, Wang Y, et al.A novel magnetic-geared outer-rotor permanent-magnet brushless motor[C]//4th IET Conference on Power Electronics, Machines and Drives, Stevenage, 2008: 33-36. [3] Li Dawei, Qu Ronghai, Li Jian.Topologies and analysis of flux-modulation machines[C]//IEEE Energy Conversion Congress and Exposition(ECCE), Montreal, QC, Canada, 2015: 2153-2160. [4] Zhou Huawei, Zhang Junjie, Lu Zhen, et al.A novel five-phase double-stator tubular fault-tolerant flux-modulation permanent magnet motor[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 5202005. [5] Liu Zhengmeng, Zhao Wenxiang, Ji Jinghua.Electromagnetic performance of double-stator flux-modulation permanent-magnet motor[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [6] Sheng Tiantian, Niu Shuangxia, Fu Weinong, et al.Topology exploration and torque component analysis of double stator biased flux machines based on magnetic field modulation mechanism[J]. IEEE Transactions on Energy Conversion, 2018, 33(2): 584-593. [7] Cheng Ming, Han Peng, Hua Wei.General airgap field modulation theory for electrical machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(8): 6063-6074. [8] Wang Yunchong, Niu Shuangxia, Fu W N.A novel dual-rotor bidirectional flux-modulation PM generator for stand-alone DC power supply[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 818-828. [9] Niu Shuangxia, Ho S L, Fu W N, et al.Quantitative comparison of novel vernier permanent magnet machines[J]. IEEE Transactions on Magnetics, 2010, 46(6): 2032-2035. [10] Chau K T, Zhang Dong, Jiang J Z, et al.Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2504-2506. [11] Wang L L, Shen J X, Luk P C K, et al. Development of a magnetic-geared permanent-magnet brushless motor[J]. IEEE Transactions on Magnetics, 2009, 45(10): 4578-4581. [12] Jang Daekyu, Chang Junghwan.Effects of flux modulation poles on the radial magnetic forces in surface-mounted permanent-magnet vernier machines[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-4. [13] Zou Tianjie, Li Dawei, Qu Ronghai, et al.Performance comparison of surface and spoke-type flux-modulation machines with different pole ratios[J]. IEEE Transactions on Magnetics, 2017, 53(6): 1-5. [14] Luo Xiang, Niu Shuangxia.A novel contra-rotating power split transmission system for wind power generation and its dual MPPT control strategy[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 6924-6935. [15] 李岱岩, 白保东, 杨晨, 等. 基于调磁块阵列的永磁游标电机研究[J]. 电工技术学报, 2018, 33(12): 359-366. Li Daiyan, Bai Baodong, Yang Chen, et al.Study of permanent magnet vernier machine by using magnetic tuning block array[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 359-366. [16] 张静, 余海涛, 施振川. 一种波浪发电装置用低速双动子永磁直线电机运行机理研究[J]. 电工技术学报, 2018, 33(10): 4553-4562. Zhang Jing, Yu Haitao, Shi Zhenchuan.Research on a tubular linear permanent magnet machines with dual translators for low speed wave energy conversion[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 4553-4562. [17] 朱健, 曹君慈, 刘瑞芳, 等. 电动汽车用永磁同步电机铁心采用非晶合金与硅钢的性能比较[J]. 电工技术学报, 2018, 33(12): 352-358. Zhu Jian, Cao Junrui, Liu Ruifang, et al.Comparative analysis of silicon steel and amorphous on the performance of permanent magnet synchronous motors on electric vehicles[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 352-358. [18] 李晓华, 刘成健, 梅柏杉, 等. 电动汽车IPMSM宽范围调速振动噪声源分析[J]. 中国电机工程学报, 2018, 38(6): 5219-5227, 5319. Li Xiaohua, Liu Chengjian, Mei Boshan, et al.Vibration and noise sources analysis of IPMSM for electric vehicles in a wide-speed range[J]. Proceedings of the CSEE, 2018, 38(6): 5219-5227, 5319. [19] Zhu Li, Jiang S Z, Jiang J Z, et al.A new simplex wave winding permanent-magnet brushless DC machine[J]. IEEE Transactions on Magnetics, 2011, 47(1): 252-259. [20] Zhu Li, Jiang S Z, Jiang J Z, et al.Speed range extension for simplex wave winding permanent-magnet brushless DC machine[J]. IEEE Transactions on Magnetics, 2013, 49(2): 890-897. [21] Qiao Zhaowei, Shi Tingna, Wang Yindong et al. New sliding-mode observer for position sensorless control of permanent-magnet synchronous motor[J]. IEEE Transactions on Industrial Electronics, 2013, 60(2): 710-719. [22] 张勇军, 汪伟, 张小庆, 等. 带电阻在线辨识的改进型永磁同步电机滑模观测方法[J]. 电机与控制学报, 2017, 21(6): 10-17, 25. Zhang Yongjun, Wang Wei, Zhang Xiaoqing, et al.Study on improved sliding-mode control with resistance estimation of PMSM[J]. Electric Machines and Control, 2017, 21(6): 10-17, 25. [23] 刘胜, 郭晓杰, 张兰勇. 六相永磁同步电机新型单向滑模控制[J]. 电机与控制学报, 2018, 22(10): 10-19. Liu Sheng, Guo Xiaojie, Zhang Lanyong.Unidirectional sliding mode control for six-phase PMSM system[J]. Electric Machines and Control, 2018, 22(10): 10-19. [24] 陆骏, 杨建国. 永磁同步电机滑模直接转速观测器[J]. 电机与控制学报, 2018, 22(1): 86-92. Lu Jun, Yang Jianguo.Direct sliding mode speed observer of permanent magnetic synchronous motor[J]. Electric Machines and Control, 2018, 22(1): 86-92. [25] 尹忠刚, 白聪, 杜超, 等. 基于内模干扰观测器的永磁同步直线电机无差拍电流预测控制方法[J]. 电工技术学报, 2018, 33(24):107-116. Yin Zhonggang, Bai Cong, Du Chao, et al.Deadbeat predictive current control for permanent magnet linear synchronous motor based on internal model disturbance observer[J]. Transactions of China Electrotechnical Society, 2018, 33(24): 107-116. [26] Fan Ying, Zhang Li, Cheng Ming, et al.Sensorless SVPWM-FADTC of a new flux-modulated permanent-magnet wheel motor based on a wide-speed sliding mode observer[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 3143-3151. [27] 班斐, 连广坤, 陈彪, 等. 针对永磁同步电机的解耦预测转矩控制策略研究及其无位置传感器对比分析[J]. 电工技术学报, 2018, 33(增刊2): 401-410. Ban Fei, Lian Guangkun, Chen Biao, et al.Comparative analysis of sensorless control methods based on the decoupling predictive torque control strategy for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(S2): 401-410. |
|
|
|