|
|
Infrared Image Anomaly Automatic Detection Method for Power Equipment Based on Improved Single Shot Multi Box Detection |
Wang Xuhong, Li Hao, Fan Shaosheng, Jiang Zhipeng |
College of Electrical and Information Engineering Changsha University of Science and Technology Changsha 410114 China |
|
|
Abstract In order to realize automatic detection of infrared images collected by infrared thermal imaging cameras carried by intelligent power inspection equipment such as various inspection robots and drones, an automatic detection method for infrared image anomalies of power equipment based on improved SSD is proposed. The infrared image of the typical faulty power equipment collected is uniformly preprocessed; the power equipment and the abnormal area are marked and a standard data set is created; the detection network is built; the data and the pre-training model are read into the established network for fine-tuning training verification, and the final model file is obtained. test. Experiments show that the method has high generalization and high accuracy; it can achieve the effect of real-time automatic detection of many types of typical power equipment under infrared images and locate abnormal heating areas, which will make the existing power inspection equipment “smart+”.
|
Received: 30 June 2018
Published: 05 March 2020
|
|
|
|
|
[1] 王淼, 杜伟, 孙鸿博, 等. 基于红外图像识别的输电线路故障诊断方法[J]. 红外技术, 2017, 39(4): 383-386. Wang Miao, Du Wei, Sun Hongbo, et al.Trans- mission line fault diagnosis method based on infrared image recognition[J]. Infrared Technology, 2017, 39(4): 383-386. [2] 张文峰, 彭向阳, 陈锐民, 等. 基于无人机红外视频的输电线路发热缺陷智能诊断技术[J]. 电网技术, 2014, 38(5): 1334-1338. Zhang Wenfeng, Peng Xiangyang, Chen Ruimin, et al.An intelligent diagnostic technique for heat defects in transmission line based on UAV infrared video[J]. Power System Technology, 2014, 38(5): 1334-1338. [3] 杨政勃, 金立军, 张文豪, 等. 基于红外图像识别的输电线路故障诊断[J]. 现代电力, 2012, 29(2): 76-79. Yang Zhengbo, Jin Lijun, Zhang Wenhao, et al.The fault diagnosis of transmission line based on infrared image recognition[J]. Modern Electric Power, 2012, 29(2): 76-79. [4] 康龙. 基于红外图像处理的变电站设备故障诊断[D]. 北京: 华北电力大学, 2016. [5] 魏钢, 冯中正, 唐跃林, 等. 输变电设备红外故障诊断技术与试验研究[J]. 电气技术, 2013, 14(6): 75-78. Wei Gang, Feng Zhongzheng, Tang Yuelin, et al.Infrared diagnostic technology of power transmission devices and experimental study[J]. Electrical Engin- eering, 2013, 14(6): 75-78. [6] 林颖, 郭志红, 陈玉峰. 基于卷积递归网络的电流互感器红外故障图像诊断[J]. 电力系统保护与控制, 2017, 45(16): 87-94. Lin Ying, Guo Zhihong, Chen Yufeng.Convolutional- recursive network based current transformer infrared fault image diagnosis[J]. Power System Protection and Control, 2017, 45(16): 87-94. [7] 贾鑫. 基于双监督信号卷积神经网络的电气设备红外故障识别研究[D]. 天津: 天津理工大学, 2018. [8] 李云昊. 基于红外成像的嵌入式变压器故障检测技术的研究[D]. 重庆: 重庆理工大学, 2018. [9] Goodfellow I, Bengio Y, Courville A, et al.Deep learning[M]. Cambridge: MIT Press, 2016. [10] Krizhevsky A, Sutskever I, Hinton G E.Imagenet classification with deep convolutional neural net- works[C]//Advances in Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097-1105. [11] 周风余, 李贻斌, 冯国瑞. 巡检机器人对输电线断股实时在线检测与诊断的一种方法[J]. 电工技术学报, 2010, 25(6): 185-191. Zhou Fengyu, Li Yibin, Feng Guorui.A real-time online method for detecting and diagnosing broken strand of high-voltage transmission line with inspection robot[J]. Transactions of China Electrotechnical Society, 2010, 25(6): 185-191. [12] 陈永辉, 蔡葵, 刘勇军, 等. 供电设备红外诊断技术[M]. 北京: 中国水利水电出版社, 2006. [13] 李进扬. 输变电设备红外检测典型案例分析[M]. 北京: 中国电力出版社, 2014. [14] 上海市电力公司. 电力设备红外检测诊断图谱及应用规范[M]. 北京: 中国电力出版社, 2004. [15] Liu Wei, Anguelov D, Erhan D, et al.Ssd: single shot multibox detector[C]//European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 2016: 21-37. [16] Everingham M, Van Gool L, Williams C K I, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. [17] Ren Shaoqing, He Kaiming, Girshick R, et al.Faster r-cnn: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, Montreal, Canada, 2015: 91-99. [18] Simonyan K, Zisserman A.Very deep convolutional networks for large-scale image recognition[J/OL]. [2015-04-10].https://arxiv.org/abs/1409. 1556. [19] Howard A G, Zhu Menglong, Chen Bo, et al.Mobilenets: efficient convolutional neural networks for mobile vision applications[J/OL]. [2017-04-17].https://arxiv.org/ abs/1704.04861. |
|
|
|