|
|
Analysis on the Unidirectional DC Circuit Breaker and Protection Strategy |
Yang Tian1, Liu Xiaoming1,2, Wu Qi1, Chen Hai2, Li Longnv2 |
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tianjin Polytechnic University Tianjin 300387 China |
|
|
Abstract Hybrid direct current circuit breaker (DCCB) is an important equipment to build flexible DC power grid, but its large use of insulated gate bipolar transistor (IGBT) results in high manufacturing cost. The unidirectional hybrid DC circuit breaker topology was put forward, and the unidirectional protection strategy of multi-terminal direct current (MTDC) grid is explored. Under the premise of ensuring reliability, the unidirectional hybrid breaker requires half the number of required IGBT, which improved the utilization rate of IGBT and effectively reduced the cost. In order to study the performance of unidirectional protection strategy, a three-terminal DC grid is modeled in PSCAD/EMTDC, and simulation tests of isolating different types of short circuit faults are carried out. The results show that the unidirectional hybrid DC circuit breaker can identify the fault current accurately and break the fault line quickly, which proves that its topology structure and protection scheme can meet the requirement of system protection speed and reliability.
|
Received: 30 June 2018
Published: 05 March 2020
|
|
|
|
|
[1] 徐政, 屠卿瑞, 管敏渊, 等. 柔性直流输电系统[M]. 北京: 机械工业出版社, 2013. [2] Flourentzou N, Agelidis V G, Demetriades G D.VSC-based HVDC power transmission systems: an overview[J]. IEEE Transactions on Power Electronics, 2009, 24(3): 592-602. [3] Akhmatov V, Callavik M, Franck C M, et al.Technical guidelines and prestandardization work for first HVDC grids[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 327-335. [4] 吴杰, 王志新. 多端柔性直流输电系统的改进下垂控制策略[J]. 电工技术学报, 2017, 32(20): 241-250. Wu Jie, Wang Zhixin.Improved droop control strategy for multi-terminal voltage source converter- HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 241-250. [5] 王振浩, 张明泽, 杜虹锦, 等. 考虑柔性直流落点约束的最优主动解列断面搜索算法[J]. 电工技术学报, 2017, 32(17): 57-66. Wang Zhenhao, Zhang Mingze, Du Hongjin, et al.A searching algorithm for optimal controlled islanding surfaces considering VSC-HVDC terminal constraint[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 57-66. [6] 徐政. 交直流电力系统动态行为分析[M]. 北京: 机械工业出版社, 2004. [7] 李帅, 赵成勇, 许建中, 等. 一种新型限流式高压直流断路器拓扑[J]. 电工技术学报, 2017, 32(17): 102-110. Li Shuai, Zhao Chengyong, Xu Jianzhong, et al.A new topology for current-limiting HVDC circuit breaker[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 102-110. [8] 邹积岩, 刘晓明, 于德恩. 基于智能模块的高压直流真空断路器研究[J]. 电工技术学报, 2015, 30(13): 47-55. Zou Jiyan, Liu Xiaoming, Yu De’en.Investigations on the HVDC vacuum circuit breaker based on intel- ligent models[J]. Transactions of China Electro- technical Society, 2015, 30(13): 47-55. [9] 张国军, 宋飞凡, 李绍明, 等. 三阶段电流转移混合型无弧直流断路器[J]. 电工技术学报, 2017, 32(11): 87-95. Zhang Guojun, Song Feifan, Li Shaoming, et al.Hybrid arc-less DC circuit breaker based on three stage current commutation[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 87-95. [10] 徐政, 肖晃庆, 徐雨哲. 直流断路器的基本原理和实现方法研究[J]. 高电压技术, 2018, 44(2): 347-357. Xu Zheng, Xiao Huangqing, Xu Yuzhe.Study on basic principle and its realization methods for DC circuit breakers[J]. High Voltage Engineering, 2018, 44(2): 347-357. [11] Ahmed N, Angquist L, Mahmood S, et al.Efficient modeling of an MMC-based multi terminal DC system employing hybrid HVDC breakers[J]. IEEE Transactions on Power Delivery, 2015, 30(4): 1792-1801. [12] Bucher M K, Franck C M.Contribution of fault current sources in multi terminal HVDC cable networks[J]. IEEE Transactions on Power Delivery, 2013, 28(3): 1796-1803. [13] 孙栩, 曹士冬, 卜广全, 等. 架空线柔性直流电网构建方案[J]. 电网技术, 2016, 40(3): 678-682. Sun Xu, Cao Shidong, Bu Guangquan, et al.Con- struction scheme of overhead line flexible HVDC grid[J]. Power System Technology, 2016, 40(3): 678-682. [14] 刘高任, 许烽, 徐政, 等. 适用于直流电网的组合式高压直流断路器[J]. 电网技术, 2016, 40(1): 70-77. Liu Gaoren, Xu Feng, Xu Zheng, et al.An assembled HVDC breaker for HVDC grid[J]. Power System Technology, 2016, 40(1): 70-77. [15] Callavik M, Blomberg A, Häfner J, et al.The hybrid HVDC breaker-an innovation breakthrough enabling reliable HVDC grids[Z]. ABB Grid System, Techni- cal Paper, 2012. [16] 宋国兵, 高淑萍, 蔡新雷, 等. 高压直流输电线路继电保护技术综述[J]. 电力系统自动化, 2012, 36(22): 123-129. Song Guobing, Gao Shuping, Cai Xinlei, et al.Survey of relay protection technology for HVDC transmission lines[J]. Automation of Eectric Power Systems, 2012, 36(22): 123-129. [17] 吴亚楠, 吕铮, 贺之渊, 等. 基于架空线的直流电网保护方案研究[J]. 中国电机工程学报, 2016, 36(14): 3726-3733. Wu Yanan, Lü Zheng, He Zhiyuan, et al.Study on the protection strategies of HVDC grid for overhead line application[J]. Proceedings of the CSEE, 2016, 36(14): 3726-3733. [18] Khan U A, Lee J, Amir F, et al.A novel model of HVDC hybrid-type superconducting circuit breaker and its performance analysis for limiting and breaking DC fault currents[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(6): 1-9. [19] 徐政, 刘高任, 张哲任. 柔性直流输电网的故障保护原理研究[J]. 高电压技术, 2017, 43(1): 1-8. Xu Zheng, Liu Gaoren, Zhang Zheren.Research on fault protection principle of DC grids[J]. High Voltage Engineering, 2017, 43(1): 1-8. [20] 秦红霞, 孙刚, 时伯年, 等. 柔性直流配网极间故障控制保护策略与主设备参数配合研究[J]. 电力系统保护与控制, 2016, 44(21): 150-156. Qin Hongxia, Sun Gang, Shi Bonian, et al.Research on control and protection strategy of MMC based DC distribution grid with interpoles fault[J]. Power System Protection and Control, 2016, 44(21): 150-156. [21] 华文, 凌卫家, 黄晓明, 等. 舟山多端柔性直流系统在线极隔离试验[J]. 中国电力, 2016, 49(6): 78-82. Hua Wen, Ling Weijia, Huang Xiaoming, et al.The online isolation test of Zhoushan multi-terminal MMC-HVDC system[J]. Electric Power, 2016, 49(6): 78-82. [22] 梁少华, 田杰, 曹冬明, 等. 柔性直流输电系统控制保护方案[J]. 电力系统自动化, 2013, 37(15): 59-65. Liang Shaohua, Tian Jie, Cao Dongming, et al.A control and protection scheme for VSC-HVDC system[J]. Automation of Electric Power Systems, 2013, 37(15): 59-65. |
|
|
|