|
|
Movement and Discharge Characteristics of Micron-Scale Metal Dust in Gas Insulated Switchgear |
Zhang Liangen1, Lu Shijie1, Li Chengrong1, Cui Boyuan2, Wu Yuyi2 |
1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; 2. High Voltage Research Institute China Electric Power Research Institute Beijing 100192 China |
|
|
Abstract Metal particles are one of the main threats to the insulation safety of gas insulated switchgear (GIS). Previous studies on metal particles focused on millimeter-scale, but pollutants dropped by contacts frictionally are on the order of micrometers. Therefore, it is necessary to study the motion behavior and discharge characteristics of metal dusts. In this paper, a 126kV 21 scaled GIS platform was built. The motion images and adsorption images of the insulator surface and cavity subface were recorded. Discharge pulse current was recorded during the moving and adsorption phases. The results showed that the metal dust had a diffusion motion in the axial and tangential directions in addition to the radial runout. After a few minutes, the dust stopped moving and formed absorption in the cavity. In the adsorption statistics of the insulator surface, the longitudinal distribution was relatively uniform, while the radial distribution on the outer region was slightly higher than those on the middle and the inner regions. The distribution on the cavity subface was negatively correlated with the electric field strength, and the weak electric field region was more likely to adsorb and accumulate dust. The discharge signal could be measured during the dust moving phase, but no signal could be detected after adsorption within 72 hours. The dust force analysis was carried out. It is demonstrated that the Coulomb force Fq and the gas resistance Fv are the dominant factors of movement. The van der Waals force is the cause of dust adsorption on the cavity subface, while the adsorption of the insulator surface is combined effect of the mirror force and van der Waals.
|
Received: 25 April 2019
Published: 17 January 2020
|
|
|
|
|
[1] 国家电网公司运维检修部. 高压开关设备典型故障案例汇编: 2006—2010年[M]. 北京: 中国电力出版社, 2012. [2] 国家电网公司运维检修部. 电网设备状态检测技术应用典型案例: 2011—2013年[M]. 北京: 中国电力出版社, 2014. [3] 张连根, 路士杰, 李成榕, 等. GIS中线形和球形金属微粒的运动行为和危害性[J]. 电工技术学报, 2019, 34(20): 4217-4225. Zhang Liangen, Lu Shijie, Li Chengrong, et al.Motor behavior and hazard of spherical and linear particle in gas insulated switchgear[J]. Transactions of China Electrotechnical Society, 2019, 34(20): 4217-4225. [4] Khan Y, Sakai K, Okabe S, et al.Importance of the consideration of electrical gradient force in the deac- tivation of free conducting particle under DC voltage[C]//IEEE/PES Transmission and Distribution Conference and Exhibition, Yokohama, Japan, 2002: 904-908. [5] Meijer S, Zoetmulder G A, Smit J J, et al.Risk assessment of free moving particles in GIS using spectral and partial discharge analysis[C]//IEEE International Symposium on Electrical Insulation, Boston, USA, 2002: 7-10. [6] You Haoyang, Zhang Qiaogen, Guo Can, et al.Motion and discharge characteristics of metal particles existing in GIS under DC voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24(2): 876-885. [7] 王健, 李伯涛, 李庆民, 等. 直流GIL中线形金属微粒对柱式绝缘子表面电荷积聚的影响[J]. 电工技术学报, 2016, 31(15): 213-222. Wang Jian, Li Botao, Li Qingmin, et al.Impact of linear metal particle on surface charge accumulation of post insulator within DC GIL[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 213-222. [8] 王健, 李庆民, 李伯涛, 等. 直流应力下电极表面覆膜对金属微粒启举的影响机理研究[J]. 电工技术学报, 2015, 30(5): 119-127. Wang Jian, Li Qingmin, Li Botao, et al.Mechanism analysis of the electrode-coating’s impact on the particle-lifting under DC voltage[J]. Transactions of China Electrotechnical Society, 2015, 30(5): 119-127. [9] 贾江波, 张乔根, 师晓岩, 等. 交流电压下绝缘子附近导电微粒运动特性[J]. 电工技术学报, 2008, 23(5): 7-11. Jia Jiangbo, Zhang Qiaogen, Shi Xiaoyan, et al.Motion of conducting particle near PTFE spacer under AC voltage[J]. Transactions of China Electro- technical Society, 2008, 23(5): 7-11. [10] 律方成, 刘宏宇, 李志兵, 等. 直流电压下SF6气体中电极覆膜对金属微粒启举的影响机理[J]. 电工技术学报, 2017, 32(13): 239-247. Lü Fangcheng, Liu Hongyu, Li Zhibing, et al.Influence mechanism of dielectric coated electrodes on metallic particle lift-off in SF6 gas under DC voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(13): 239-247. [11] 季洪鑫, 李成榕, 庞志开, 等. 电压波形对GIS自由金属颗粒放电特性的影响[J]. 电工技术学报, 2016, 31(13): 218-226. Ji Hongxin, Li Chengrong, Pang Zhikai, et al.Influence of voltage waveforms on partial discharge characteristics of GIS mobilized metal particles[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 218-226. [12] Ji Hongxin, Li Chengrong, Pang Zhikai, et al.Moving behaviors and harmfulness analysis of multiple linear metal particles in GIS[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(6): 3355-3363. [13] 任凡, 刘飞, 李聪波, 等. 机械加工粉尘问题的研究现状及体系结构框架[J]. 中国机械工程, 2011, 22(8): 994-1001. Ren Fan, Liu Fei, Li Congbo, et al.State of the art of machining dust researches and their framework[J]. Chinese Journal of Mechanical Engineering, 2011, 22(8): 994-1001. [14] 范志康. 高压电触头材料[M]. 北京: 机械工业出版社, 2004. [15] Mangelsdorf C W, Cooke C M.Static charge accumulated by epoxy post insulation stressed at high DC voltages[C]//Conference on Electrical Insulation & Dielectric Phenomena, Pocono Manor, USA, 1978: 220-227. [16] Qi Bo, Li Chengrong, Hao Zhen, et al.Surface discharge initiated by immobilized metallic particles attached to gas insulated substation insulators: process and features[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 792-800. [17] 黎斌. SF6高压电气设计[M]. 北京: 机械工业出版社, 2003. [18] Zaghbani K R.Fine and ultrafine particle characteri- zation and modeling in high-speed milling of 6061-T6 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2009, 18(1): 38-42. [19] 中国高压开关设备标准化技术委员会. GB 7674— 2008 额定电压72.5kV及以上气体绝缘金属封闭开关设备[S]. 2008. [20] Le N R.The electrostatic problem of a portion of sphere protruding from a plane electrode in an electric field[J]. Journal of Physics A: Mathematical and General, 1981, 14(4): 945-955. [21] 刘起霞. 工程流体力学[M]. 武汉: 华中科技大学出版社, 2016. [22] 何亚群, 赵跃民, 段晨龙, 等. 主动脉动气流分选动力学模型及其数值模拟[J]. 中国矿业大学学报, 2008, 37(2): 157-162. He Yaqun, Zhao Yuemin, Duan Chenlong, et al.Study on dynamic models of active pulsing air separation and their numerical simulation[J]. Journal of China University of Mining & Technology, 2008, 37(2): 157-162. [23] 王中平, 孙振平, 金明. 表面物理化学[M]. 上海:同济大学出版社, 2015. [24] 崔燕. 微米级固体颗粒的分形及其与界面间粘附力的关系研究[D]. 长沙: 中南大学, 2011. [25] 张博雅, 张贵新. 直流GIL中固-气界面电荷特性研究综述Ⅰ: 测量技术及积聚机理[J]. 电工技术学报, 2018, 33(20): 4649-4662. Zhang Boya, Zhang Guixin.Review of charge accumulation characteristics at gas-solid interface in DC GIL, part I: measurement and mechanisms[J]. Transactions of China Electrotechnical Society, 2018, 33(20): 4649-4662. [26] 俞翔霄, 俞赞琪, 陆惠英, 等. 环氧树脂电绝缘材料[M]. 北京: 化学工业出版社, 2007. [27] 鲍登, 泰伯. 固体的摩擦与润滑[M]. 北京: 机械工业出版社, 1986. |
|
|
|