|
|
Fault Direction Judgment for Shipboard AC Network Based on Integrative Criterion of Change Rate of Current and Fault Initial Angle |
Huang Jing, Zhang Xiaofeng, Ye Zhihao, Zhang Tao |
College of Electrical Engineering Naval University of Engineering Wuhan 430033 China |
|
|
Abstract In this paper, the characteristic of change rates of three-phase and two-phase short- circuit currents for shipboard AC network are theoretical analyzed. The effects of fault initial angle, power angle and line impedance on the change rates of short-circuit currents are studied. The relation between fault direction and polarity of change rate of initial short-circuit current is analyzed. Based on the analysis results, an integrative criterion of fault direction judgment using change rate of initial short-circuit current and fault initial angle is proposed. Using the criterion, the fault direction can be rapidly judged by detecting and comparing the fault initial angle and polarity of change rate of initial short-circuit current with less requirements of sampling precision, real-time date and computing capacity. Simulation results verify the validity of the proposed method of fault direction judgment.
|
Received: 26 September 2018
Published: 18 November 2019
|
|
|
|
|
[1] 贺家李, 李永丽, 董新洲, 等. 电力系统继电保护原理[M]. 5版. 北京: 中国电力出版社, 2018. [2] 古斌, 谭建成. 基于瞬时功率理论的新型功率方向元件[J]. 电工技术学报, 2010, 25(2): 177-182. Gu Bin, Tan Jiancheng.A study of the novel power direction relay based on the instantaneous power theory[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 177-182. [3] 刘浩芳, 王增平, 刘汉青, 等. 改进能量方向保护及其在特高压输电线路上的应用[J]. 电网技术, 2010, 34(10): 187-191. Liu Haofang, Wang Zengping, Liu Hanqing, et al.Improved energy directional protection and its application in UHV transmission lines[J]. Power System Technology, 2010, 34(10): 187-191. [4] Ali H, Reza I.A new directional element for micro- grid protection[J]. IEEE Transactions on Smart Grid, 2018, 9(6): 6862-6876. [5] 李振兴, 叶诗韵, 王秋杰, 等. 适用于主动配电网的电流方向元件[J]. 高压电器, 2018, 54(3): 199-204. Li Zhenxing, Ye Shiyun, Wang Qiujie, et al.Directional element of current for active distribution network[J]. High Voltage Apparatus, 2010, 34(10): 199-204. [6] 李俊刚, 孟乐, 张爱民, 等. 基于相量集合的站域差动保护研究[J]. 电力系统保护与控制, 2015, 43(6): 93-97. Li Jungang, Meng Le, Zhang Aimin, et al.Research on substation differential protection based on phase set[J]. Power System Protection and Control, 2015, 43(6): 93-97. [7] 许偲轩, 陆于平. 电流相位变化量纵联保护方案[J]. 电工技术学报, 2016, 31(16): 198-206. Xu Sixuan, Lu Yuping.The current phase variation pilot protection method[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 198-206. [8] 黄纯, 刘鹏辉, 江亚群, 等. 基于动态时间弯曲距离的主动配电网馈线差动保护[J]. 电工技术学报, 2017, 32(6): 240-247. Huang Chun, Liu Penghui, Jiang Yaqun, et al.Feeder differential protection based on dynamic time warping distance in active distribution network[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 240-247. [9] Mir M T, Heresh S, Morteza N, et al.High-speed decision tree based series-compensated transmission lines protection using differential phase angle of superimposed current[J]. IEEE Transactions on Power Delivery, 2018, 33(6): 3130-3138. [10] 段建东, 张保会, 周艺. 超高速暂态方向继电器的研究[J]. 中国电机工程学报, 2005, 25(4): 7-12. Duan Jiandong, Zhang Baohui, Zhou Yi.Study of ultra-high-speed transient-based directional relay[J]. Proceedings of the CSEE, 2005, 25(4): 7-12. [11] 郭振威, 姚建刚, 康童, 等. 一种输电线路超高速方向保护方法[J]. 电工技术学报, 2016, 31(22): 168-177. Guo Zhenwei, Yao Jiangang, Kang Tong, et al.A method for directional ultra-high-speed protection of transmission lines[J]. Transactions of China Electro- technical Society, 2016, 31(22): 168-177. [12] Saeid H, Seyed G, Morteza R, et al.Ultra-high-speed protection of transmission lines using traveling wave theory[J]. Electric Power Systems Research, 2016, 132: 94-103. [13] Costa F B, Monti A, Lopes F V, et al.Two-terminal traveling-wave-based transmission-line protection[J]. IEEE Transactions on Power Delivery, 2017, 32(3): 1382-1393. [14] 郭雅蓉, 周泽昕, 柳焕章, 等. 时差法计算半波长线路差动保护最优差动点[J]. 中国电机工程学报, 2016, 36(24): 6796-6801. Guo Yarong, Zhou Zexin, Liu Huangzhang, et al.Time difference method to calculate the optimal differential point of half-wavelength AC transmission line[J]. Proceedings of the CSEE, 2016, 36(24): 6796-6801. [15] 汤兰西, 董新洲. 半波长交流输电线路行波差动电流特性的研究[J]. 中国电机工程学报, 2017, 37(8): 2261-2270. Tang Lanxi, Dong Xinzhou.Study on the characteri- stic of traveling wave differential current on half- wave-length AC transmission lines[J]. Proceedings of the CSEE, 2017, 37(8): 2261-2270. [16] 李文国, 马秉宇. 基于时域特征和小波分析的故障行波特征识别方法[J]. 电气技术, 2017, 18(5): 30-33, 39. Li Wenguo, Ma Bingyu.The method of fault traveling wave feature recognition based on time- domain characteristics and wavelet analysis[J]. Electrical Engineering, 2017, 18(5): 30-33, 39. [17] 邓丰, 李欣然, 曾祥君. 基于全波形信息的混联线路单端行波定位方法[J]. 电工技术学报, 2018, 33(15): 3471-3482. Deng Feng, Li Xinran, Zeng Xiangjun.Single-ended traveling-wave-based fault location algorithm for hybrid transmission line based on the full- waveform[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3471-3482. [18] 高景德, 王祥珩, 李发海. 交流电机及其系统的分析[M]. 北京: 清华大学出版社, 2005. [19] 中国船级社. 钢质海船入级规范: 第4分册(2012版)[M]. 北京: 人民交通出版社, 2012. [20] 周仕万, 贺慧英, 黄靖, 等. 交流系统短路电流上升率特性分析及其应用[J]. 舰船电子工程, 2014, 34(11): 178-182. Zhou Shiwan, He Huiying, Huang Jing, et al.Analysis and application of AC short circuit current rising rate feature and short-circuit fault diagnostic[J]. Ship Electronic Engineering, 2014, 34(11): 178-182. [21] 董新洲, 雷傲宇, 汤兰西. 电力线路行波差动保护与电流差动保护的比较研究[J]. 电力系统保护与控制, 2018, 46(1): 1-8. Dong Xinzhou, Lei Aoyu, Tang Lanxi.Comparative study of traveling wave differential protection and current differential protection for power lines[J]. Power System Protection and Control, 2018, 46(1): 1-8. |
|
|
|