|
|
Modeling and Analysis of Nonlinear Electromagnetic Force of Electric Shaker Considering Displacement Change of Driving Coil |
Zuo Shuguang, Huang Rongkui, Feng Zhaoyang, Hu Kun |
Clean Energy Automotive Engineering Center Tongji University Shanghai 201804 China |
|
|
Abstract In this paper, an accurate sub-domain analytical model of the electric shaker was established in the two-dimensional Cartesian coordinate system. The solution areas were divided into the excitation coil area, the driving coil area and the air gap area. The general formulas based on Fourier theory were used to give the general solution of the magnetic induction intensity of each subdomain. The unknown coefficients in the general solution were determined by the boundary conditions between the subdomains, so as to realize the magnetic field analysis of the electric shaker. Taking a certain large-scale electric shaker as an example, the magnetic density analytical calculation results of air gap were compared with the two-dimensional finite element calculation results, and the accuracy of the analytical model was verified. Finally, on the basis of the static magnetic field analysis results, considering the displacement change of the driving coil, the electromagnetic force formula was used to calculate the nonlinear electromagnetic force with the displacement. It is concluded that the influence of the load magnetic field on the original excitation magnetic field makes the non-uniformity of the magnetic density distribution in the air gap, which causes nonlinear electromagnetic force of the driving coil during the motion.
|
Received: 17 July 2018
Published: 18 November 2019
|
|
|
|
|
[1] 宦海祥, 范真. 电动振动设备的发展及展望[J]. 环境技术, 2006, 24(4): 28-31. Huan Haixiang, Fan Zhen.Development and prospect of electric vibration equipment[J]. Environmental Engineering, 2006, 24(4): 28-31. [2] 孟繁莹. 大型电动振动台动力学分析与数值模拟研究[D]. 北京: 北京工业大学, 2013. [3] Botezan A, Darie S, Vadan I, et al.Design and analysis of a permanent-magnet electrodynamic vibrator[C]//Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, Lille, 2009: 1-6. [4] 范宣华, 胡绍全. 电动振动台空台建模与仿真技术研究[J]. 系统仿真学报, 2006, 18(2): 313-315. Fan Xuanhua, Hu Shaoquan.Research on modeling and simulation technology of empty electric shaker[J]. Journal of System Simulation, 2006, 18(2): 313-315. [5] Li Hao, Yang Baokun, Yan Guirong, et al.Vibration control simulation of an electrodynamic shaker based on an electromagnetic finite element model[J]. Inter- national Journal of Applied Electromagnetics and Mechanics, 2012, 39(1-4): 769-777. [6] Saraswat A, Tiwari N.Modeling and study of nonlinear effects in electrodynamic shakers[J]. Mechanical Systems & Signal Processing, 2017, 85: 162-176. [7] 雷美珍, 戴文战, 夏永明. 直线压缩机用无内定子动磁式直线振荡电机的建模与分析[J]. 电机与控制学报, 2014, 18(11): 45-50. Lei Meizhen, Dai Wenzhan, Xia Yongming.Modeling and analysis of linear acoustic oscillation motor without internal stator for linear compressor[J]. Journal of Electric Machines and Control, 2014, 18(11): 45-50. [8] 于明湖, 张玉秋, 卢琴芬, 等. 动磁式横向磁通直线振荡电机设计[J]. 浙江大学学报: 工学版, 2012, 46(2): 206-211. Yu Minghu, Zhang Yuqiu, Lu Qinfen, et al.Design of a moving magnetic transverse flux linear oscillation motor[J]. Journal of Zhejiang University: Engineering Science, 2012, 46(2): 206-211. [9] 黄允凯, 周涛. 基于等效磁路法的轴向永磁电机效率优化设计[J]. 电工技术学报, 2015, 30(2): 73-79. Huang Yunkai, Zhou Tao.Efficiency optimization design of axial permanent magnet motor based on equivalent magnetic circuit method[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 73-79. [10] 时统宇, 王大志, 石松宁, 等. 盘式永磁涡流驱动器解析建模和分析[J]. 电工技术学报, 2017, 32(2): 153-160. Shi Tongyu, Wang Dazhi, Shi Songning, et al.Analytical modeling and analysis of disk type permanent magnet eddy current driver[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 153-160. [11] 钟鸿敏, 左曙光, 吴旭东, 等. 电励磁爪极发电机气隙磁场与径向电磁力的解析计算模型[J]. 电工技术学报, 2017, 32(7): 49-58. Zhong Hongmin, Zuo Shuguang, Wu Xudong, et al.Analytical calculation model of air-gap magnetic field and radial electromagnetic force of electric excitation claw-pole generator[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 49-58. [12] 朱龙飞, 朱建国, 佟文明, 等. PWM逆变器供电引起的轴向磁通非晶电机谐波损耗的解析计算[J]. 电工技术学报, 2017, 32(16): 115-123. Zhu Longfei, Zhu Jianguo, Tong Wenming, et al.Analytical calculation of harmonic loss of axial flux amorphous motor caused by PWM inverter power supply[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 115-123. [13] 郭思源, 周理兵. 表面埋入式永磁电机磁场解析[J]. 中国电机工程学报, 2015, 35(3): 710-718. Guo Siyuan, Zhou Libing.Magnetic field analysis of surface embedded permanent magnet motor[J]. Proceedings of the CSEE, 2015, 35(3): 710-718. [14] 徐敦煌, 王东, 林楠, 等. 失磁故障下交错磁极混合励磁发电机的等效二维解析磁场模型[J]. 电工技术学报, 2017, 32(21): 87-93. Xu Dunhuang, Wang Dong, Lin Nan, et al.Equivalent two-dimensional analytical magnetic field model of staggered magnetic hybrid excitation generator under loss of magnetic field[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(21): 87-93. [15] 孙权贵, 邓智泉, 张忠明. 基于齿槽效应的高速永磁电机转子涡流损耗解析计算[J]. 电工技术学报, 2018, 33(9): 1994-2004. Sun Quangui, Deng Zhiquan, Zhang Zhongming.Analytical calculation of eddy current loss of high speed permanent magnet motor rotor based on cogging[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1994-2004. [16] Meessen K J, Gysen B L J, Paulides J J H, et al. Halbach permanent magnet shape selection for slotless tubular actuators[J]. IEEE Transactions on Magnetics, 2008, 44(11): 4305-4308. [17] Gysen B L J, Meessen K J, Paulides J J H, et al. General formulation of the electromagnetic field distribution in machines and devices using fourier analysis[J]. IEEE Transactions on Magnetics, 2009, 46(1): 39-52. |
|
|
|