|
|
Research on Electromagnetic Propagation of Partial Discharge for Electrical Equipment Using Huygens Principle |
Yang Qi1, Yang Fan1, Gao Bing1, Huang Xin1, Yu Peng2 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Shenzhen Power Supply Bureau Co. Ltd Shenzhen 518000 China |
|
|
Abstract To solve the problems of low computational efficiency and the large memory consumption caused by the incomparable size of partial discharge (PD) source with equipment in mesh generation, a numerical calculation method for electromagnetic propagation of PD in electrical equipment based on Huygens principle is presented in this paper. The first step is to refine the near-field space of the enclosed discharge source and the closed outer surface electromagnetic field is calculated. In the second step, the electromagnetic field data is imported into the target domain as an equivalent source for calculation. As the mesh size of the target space is greatly increased by using the equivalent source, the propagation characteristics of the electromagnetic field in the passive region can be quickly obtained. To verify the accuracy and efficiency of the proposed method, the electromagnetic propagation of PD in free space is taken as an example. In the end, by calculating the electromagnetic propagation of PD in a large-scale and complex dry-type transformer, the peak memory consumption based on Huygens principle is reduced to 35.45% and the computing efficiency is increased by 61.68 times. The calculation method of Huygens principle provides a method for calculating the electromagnetic propagation of PD in large-scale electrical equipment.
|
Received: 17 August 2018
Published: 18 November 2019
|
|
|
|
|
[1] 杨亚奇, 李卫国, 夏喻, 等. 低气压下长间隙交直流放电特性研究[J]. 电工技术学报, 2018, 33(5): 1143-1150. Yang Yaqi, Li Weiguo, Xia Yu, et al.Research of AC and DC discharge characteristics of long gap under low pressure[J]. Transactions of China Electro- technical Society, 2018, 33(5): 1143-1150. [2] 聂一雄, 徐卫东, 周文文, 等. 12kV固体绝缘开关柜中绝缘气隙缺陷的放电特征[J]. 电工技术学报, 2018, 33(12): 2894-2902. Nie Yixiong, Xu Weidong, Zhou Wenwen, et al.Discharge characteristics of air-gap defects in insulating material of 12kV solid insulated switchgear[J]. Transactions of China Electrotechnical Society, 2018, 33(12): 2894-2902. [3] 季洪鑫, 李成榕, 马国明, 等. 冲击电压下气体绝缘开关设备悬浮缺陷放电特征[J]. 电工技术学报, 2017, 32(6): 256-264. Ji Hongxin, Li Chengrong, Ma Guoming, et al.Characteristic analysis of gas insulated switchgear suspension defect under impulse voltage[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(6): 256-264. [4] 唐志国, 唐铭泽, 李金忠, 等. 电气设备局部放电模式识别研究综述[J]. 高电压技术, 2017, 43(7): 2263-2277. Tang Zhiguo, Tang Mingze, Li Jinzhong, et al.Review on partial discharge pattern recognition of electrical equipment[J]. High Voltage Engineering, 2017, 43(7): 2263-2277. [5] 杨帆, 杨旗, 程鹏, 等. 电缆接头内部气隙放电缺陷下的绝缘劣化程度表征方法[J]. 电工技术学报, 2017, 32(2): 24-32. Yang Fan, Yang Qi, Cheng Peng, et al.Study of cracking extent for gap discharge in insulating material of power cable joint[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 24-32. [6] 李臻, 罗林根, 盛戈皞, 等. 基于压缩感知的特高频局部放电定位法[J]. 电工技术学报, 2018, 33(1): 202-208. Li Zhen, Luo Lingen, Sheng Gehao, et al.Ultrahigh frequency partial discharge localization methodology based on compressed sensing[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 202-208. [7] 乔胜亚, 周文俊, 唐念, 等. 不同吸附剂对GIS局部放电特征气体变化规律的影响[J]. 电工技术学报, 2016, 31(3): 113-120. Qiao Shengya, Zhou Wenjun, Tang Nian, et al.Effects of different adsorbents on the evolving law of target gases under partial discharges in GIS[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 113-120. [8] 邓敏. 超声波信号在局部放电检测技术的特征集合探索[J]. 电气技术, 2017, 18(4): 95-99. Deng Min.Research on feature set of partial discharge detection technology based on ultrasonic signal[J]. Electrical Engineering, 2017, 18(4): 95-99. [9] 李天辉, 荣命哲, 王小华, 等. GIS内置式局部放电特高频传感器的设计、优化及测试研究[J]. 中国电机工程学报, 2017, 37(18): 5483-5493. Li Tianhui, Rong Mingze, Wang Xiaohua, et al.Design, optimization and experiment study of internal UHF sensor for partial discharge detection in GIS[J]. Proceedings of the CSEE, 2017, 37(18): 5483-5493. [10] 周文俊, 刘宇舜, 李鹏飞, 等. 基于特高频法检测电气设备局部放电的改进Vivaldi天线[J]. 电工技术学报, 2017, 32(12): 259-267. Zhou Wenjun, Liu Yushun, Li Pengfei, et al.Modified Vivaldi antenna applied to detect partial discharge in electrical equipment based on ultra-high frequency method[J]. Transactions of China Electro- technical Society, 2017, 32(12): 259-267. [11] FernandoÁ G, Sánchez A, Vecino F G, et al.Diagnosis of insulation condition of MV switchgears by application of different partial discharge measuring methods and sensors[J]. Sensors, 2018, 18(3): 720. [12] Li Tianhui, Wang Xiaohua, Zheng Chen, et al.Investigation on the placement effect of UHF sensor and propagation characteristics of PD-induced elec- tromagnetic wave in GIS based on FDTD method[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(3): 1015-1025. [13] LiuYakun, Fu Zhengcai, Jiang Anfeng, et al. FDTD analysis of the effects of indirect lightning on large floating roof oil tanks[J]. Electric Power Systems Research, 2016, 139(S1): 81-86. [14] 姚陈果, 黄琮鉴, 吴彬, 等. 采用时域有限差分法分析开关柜中超高频信号传播特性[J]. 高电压技术, 2013, 39(2): 272-279. Yao Chenguo, Huang Congjian, Wu Bin, et al.Propagation characteristics of UHF signals in switchgears by FDTD method[J]. High Voltage Engineering, 2013, 39(2): 272-279. [15] Kraus J D, Marhefka R J.天线[M]. 北京: 电子工业出版社, 2006. [16] Qi Yang, Fan Yang, Gao Bing, et al.Study on the propagation characteristics of partial discharge in switchgear based on near-field to far-field transfor- mation[J]. Energies, 2018, 11(7): 1-12. [17] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2005. [18] 郑奎松, 罗欢, 余慧, 等. 分析水下目标的大比例变换总场散射场源FDTD方法[J]. 计算物理, 2016, 33(1): 75-82. Zheng Kuisong, Luo Huan, Yu Hui, et al.A large-scaled total-field scattered-field source FDTD for underwater targets[J]. Chinese Journal of Com- putational Physics, 2016, 33(1): 75-82. [19] 范留明, 赵钦, 刘云贺. 倾斜入射地震波作用下成层场地动力反应的界面子波算法[J]. 岩土工程学报, 2015, 37(4): 601-607. Fan Liuming, Zhao Qin, Liu Yunhe.Interfacial wavelet algorithm for dynamic response of horizontal layered site due to inclined seismic waves[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 601-607. [20] 于晨霞, 韩立国, 巩向博, 等. 起伏地表地震波场定向照明方法[J]. 世界地质, 2016, 35(2): 536-542. Yu Chenxia, Han Liguo, Gong Xiangbo, et al.Method on directional seismic illumination on rugged surface[J]. Global Geology, 2016, 35(2): 536-542. [21] 吴永国, 贺振华, 黄德济. 基于惠更斯原理的波动方程共炮点道集地震正演[J]. 成都理工大学学报:自然科学版, 2008, 35(3): 274-278. Wu Yongguo, He Zhenhua, Huang Deji.Wave-field modeling of common shot gather records based on Huygens principle[J]. Jounal of Chengdu University of Technology: Science& Technology Edition, 2008, 35(3): 274-278. [22] 高明显. 基于超声波模拟地震波的边坡地震动力响应研究[J]. 铁道建筑, 2017(8): 83-85. Gao Mingxian.Study on slope seismic dynamic response based onultrasonic simulation of seismic wave[J]. Railway Engineering, 2017(8): 83-85. [23] 赵爱华, 张中杰. 三维复杂介质中转换波走时快速计算[J]. 地球物理学报, 2004, 47(4): 702-707. Zhao Aihua, Zhang Zhongjie.Fast calculation of converted wave travel time in 3-D complex media[J]. Chinese Journal of Geophysics, 2004, 47(4): 702-707. [24] 董明, 马宏伟, 陈渊, 等. 一种精确计算换能器空间脉冲响应的快速方法[J]. 声学学报, 2015(6): 850-854. Dong Ming, Ma Hongwei, Chen Yuan, et al.A high-speed method for computing the exact solution of spatial impulse response[J]. Acta Acustica, 2015(6): 850-854. [25] 张晔, 尹亮, 祁欣. 体外超声震波治疗冠心病的能量传递过程及声场分布[J]. 中国医学物理学杂志, 2015, 32(6): 826-829. Zhang Ye, Yin Liang, Qi Xin.Energy transfer and sound field distribution of extracorporeal ultrasonic wave for coronary heart disease[J]. Chinese Journal of Medical Physics, 2015, 32(6): 826-829. [26] 周小侠. 电大尺寸电磁结构的时域仿真实践[D]. 成都: 电子科技大学, 2005. [27] 罗欢. 水下低频电磁波远距离传播的快速FDTD算法研究[D]. 西安: 西北工业大学, 2016. [28] 杨儒贵. 高等电磁理论[M]. 北京: 高等教育出版社, 2008. [29] 傅君眉, 冯恩信. 高等电磁理论[M]. 西安: 西安交通大学出版社, 2000. [30] Warren L Stutzman, Gary A Thiele.天线理论与设计[M]. 北京: 人民邮电出版社, 2006. [31] 张赟, 曾嵘, 杨学昌, 等. 大气压下流注放电光电离过程的数值仿真[J]. 中国电机工程学报, 2009, 29(4): 110-116. Zhang Yun, Zeng Rong, Yang Xuechang, et al.Numerical simulation on streamer discharge of short air gap of atmospheric air[J]. Proceedings of the CSEE, 2009, 29(4): 110-116. [32] 彭庆军, 司马文霞, 杨庆, 等. 初始电子浓度对空气中针板间隙正极性流注放电的影响[J]. 高电压技术, 2013, 39(1): 37-43. Peng Qingjun, Sima Wenxia, Yang Qing, et al.Influence of initial electron concentration on positive streamer discharge in pin-plate air gap[J]. High Voltage Engineering, 2013, 39(1): 37-43. [33] 党训旺, 李懋坤, 杨帆, 等. 等效原理算法在不同等效面下的误差分析[J]. 北京航空航天大学学报, 2015, 41(10): 1867-1872. Dang Xunwang, Li Maokun, Yang Fan, et al.Error analysis of equivalence principle algorithm on different equivalence surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(10): 1867-1872. [34] Liu Xingmou, Yang Yongming, Yang Fan, et al.Numerical research on the losses characteristic and hot-spot temperature of laminated core joints in transformer[J]. Applied Thermal Engineering, 2017, 110: 49-61. [35] 刘行谋. 变压器直流偏磁电-磁-力特性及振动信号时频特征分析研究[D]. 重庆: 重庆大学, 2017. |
|
|
|