|
|
Design and Characteristic Research of Submerged Cryogenic Permanent Magnet Synchronous Motor |
Guo Chao, Huang Shoudao, Wang Jiabao, Feng Yaojing |
College of Electrical and Information Engineering Hunan University Changsha 410082 China |
|
|
Abstract As the key component of liquefied natural gas (LNG) pumps, the performance of submerged cryogenic motor is very important. Aiming at reducing LNG gasification capacity and improving mechanical stress, the operating characteristics of the submerged cryogenic permanent magnet synchronous motor (PMSM) in LNG (-161℃) low temperature environment were investigated. The redesign method was discussed, and the influence of low temperature on the material properties and electromagnetic parameters was analyzed theoretically. Then, a coupling finite element simulation model of multi-physical coupling of electromagnetic-fluid-heat-stress was established, and a 11kW, 6 000r/min cryogenic PMSM was designed. For security reasons, the testing device of cryogenic PMSM under low temperature condition (-196℃ liquid nitrogen) was set up, and the experimental study was carried out to verify the design methodology.
|
Received: 31 May 2018
Published: 26 September 2019
|
|
|
|
|
[1] 罗资琴, 任永平, 陈叔平, 等. LNG低温潜液泵结构及设计分析[J]. 低温与超导, 2012, 40(7): 13-16. Luo Ziqin, Ren Yongping, Chen Shuping, et al.Structureand design analysis of submerged LNG cryopump[J]. Cryogenics and Superconductivity, 2012, 40(7): 13-16. [2] 祝勇仁, 张炜, 王循明. LNG汽车加气站用潜液泵研制[J]. 机械科学与技术, 2012, 31(1): 163-166. Zhu Yongren, Zhang Wei, Wang Xunming.Research and development of LNG submerged pump for LNG car gas station[J]. Mechanical Science and Tech- nology for Aerospace Engineering, 2012, 31(1): 163-166. [3] Baranski M, Szelag W.Finite-element analysis of transient electromagnetic-thermal phenomena in a squirrel-cage motor working at cryogenic temper- ature[J]. IET Science, Measurement & Technology, 2012, 6(5): 357-363. [4] Shively R.Submerged cryogenic motor materials development[J]. IEEE Electrical Insulation Magazine, 2003, 19(3): 7-11. [5] 梁骞, 厉彦忠, 谭宏博, 等. 潜液式LNG泵的结构特点及其应用优势[J]. 天然气工业, 2008, 28(2): 123-125. Liang Qian, Li Yanzhong, Tan Hongbo, et al.Structure characteristics and application edges of submersible LNG pumps[J]. Natural Gas Industry, 2008, 28(2): 123-125. [6] 艾程柳, 黄元峰, 王海峰, 等. 潜液式LNG泵用变频低温异步电机的运行性能研究[J]. 电工技术学报, 2015, 30(14): 138-145. Ai Chengliu, Huang Yuanfeng, Wang Haifeng, et al.Research on the operating performance of an inverter-driven cryogenic induction motor for a submerged LNG pump[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 138-145. [7] 艾程柳, 黄元峰, 王海峰, 等. 潜液式液化天然气泵用变频低温异步电机的关键参数设计[J]. 中国电机工程学报, 2015, 35(10): 5317-5326. Ai Chengliu, Huang Yuanfeng, Wang Haifeng, et al.Important parameters design of inverter-driven cryogenic induction motor for submerged liquid natural gas pump[J]. Proceedings of the CSEE, 2015, 35(10): 5317-5326. [8] 艾程柳, 黄元峰, 王海峰, 等. 潜液式LNG泵低温电机及其关键技术发展综述[J]. 中国电机工程学报, 2014, 34(15): 2396-2405. Ai Chengliu, Huang Yuanfeng, Wang Haifeng, et al.Development of the cryogenic electrical motor for thesubmerged liquid natural gas pump and its keytechnologies[J]. Proceedings of the CSEE, 2014, 34(15): 2396-2405. [9] 孙晓玲, 刘忠明, 张燕. 液化天然气潜液泵的研制[J]. 低温工程, 2010, 174(2): 20-23. Sun Xiaoling, Liu Zhongming, Zhang Yan.Research and development of LNG submerged pump[J]. Cryogenics, 2010, 174(2): 20-23. [10] Dlugiewicz L, Kolowrotkiewicz J, Szelag W, et al.Permanent magnet synchronous motor to drive propellant pump[C]//IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 2012: 822-826. [11] Pronto A G, Neves M V, Rodrigues A L.Measurement and separation of magnetic losses at room and cryogenic temperature for three types of steels used in HTS transformers[J]. Journal of Superconductivity and Novel Magnetism, 2011, 24(2): 981-985. [12] Miyagi D, Otome D, Nakano M, et al.Measurement of magnetic properties of nonoriented electrical steel sheet at liquid nitrogen temperature using single sheet tester[J]. IEEE Transactions on Magnetics, 2010, 46(2): 314-317. [13] Miyamoto M, Matsuo T, Nakamura T.Measurement of vector hysteretic property of silicon steel sheets at liquid nitrogen temperature[J]. Przeglad Elektro- techniczny (Electrical Review), 2011, 87(96): 111-114. [14] 沈启平, 韩雪岩. 变频器供电下定子磁动势引起的永磁同步电机转子损耗分析[J]. 电工技术学报, 2016, 31(4): 51-57. Shen Qiping, Han Xueyan.Rotor loss analysis of the permanent magnet synchronous machine caused by stator magnetomotive force with converter powering[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 51-57. [15] 涂进, 艾程柳, 廖勇熙. 潜液式液化天然气泵用低温电机材料特性综述[J]. 微特电机, 2016, 44(1): 87-89. Tu Jin, Ai Chengliu, Liao Yongxi.Summary for material properties of cryogenic induction motor for submerged liquid natural gas pump[J]. Small & Special Electrical Machines, 2016, 44(1): 87-89. [16] Sekerák P, Hrabovcová V, Pyrhönen J, et al.Comparison of synchronous motors with different permanent magnet and winding typesr[J]. Transa- ctions on Magnetics, 2013, 49(3): 1256-1263. [17] 司纪凯, 张露锋, 封海潮, 等. 异步起动表面-内置式永磁转子同步电机特性分析及优化[J]. 电工技术学报, 2017, 32(9): 63-69. Si Jikai, Zhang Lufeng, Feng Haichao, et al.Characteristic analysis and optimization of line-start surface-mounted and interior permanent magnet synchronous motor[J]. Transactions of China Electro- technical Society, 2017, 32(9): 63-69. [18] 佟文明, 孙静阳, 舒圣浪, 等. 不同数值方法在自扇冷永磁同步电机三维热分析中的应用[J]. 电工技术学报, 2017, 32(增刊1): 151-159. Tong Wenming, Sun Jingyang, Shu Shenglang, et al.Application of different numerical methods in 3D thermal analysis for fan-ventilated permanent magnet synchronous machines[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 151-159. [19] Rabbi S F, Rahman M A.Equivalent circuit modeling of a hysteresis interior permanent magnet motor for electric submersible pumps[J]. Transactions on Magnetics, 2016, 52(7): 8104304. [20] 刘计龙, 肖飞, 沈洋, 等. 永磁同步电机无位置传感器控制技术研究综述[J]. 电工技术学报, 2017, 32(16): 76-88. Liu Jilong, Xiao Fei, Shen Yang, et al.Position- sensorless control technology of permanent-magnet synchronous motor-a review[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 76-88. |
|
|
|