|
|
Sinusoidal Optimization Model for Air Gap Magnetic Field of Eccentric Magnetic Pole Permanent Magnet Motor |
Hu Pengfei, Wang Dong, Jin Shuanbao, Wei Yingsan, Lin Nan |
National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China |
|
|
Abstract Smaller air gap magnetic field radial electromagnetic force harmonics and lower torque ripple can be obtained by optimizing the air gap magnetic field and making the radial air gap magnetic density waveform close to sinusoidal. Consequently, the overall performance of the motor is optimized. In this paper, the carter coefficient Kδ is used to correct the effective air gap length of the motor affected by the opening of the stator slot, and the influence of the actual permanent magnet relative permeability on the air gap magnetic density is considered. In addition, the air gap flux density function, the magnetization direction thickness function of the permanent magnet and the stator rotor magnetism, and the potential calculation equation are combined. Consequently, the radial air gap magnetic density calculation formula are derived under the load condition of the arc eccentric magnetic pole parallel magnetization. The radial air gap magnetic density THD (Total Harmonic Distortion) is then obtained. With the variation curve of eccentricity and polar arc coefficient, the eccentricity and polar arc coefficient which minimize the radial air gap magnetic density THD can be obtained. The analytical model has been verified by finite element method and prototype test. This analytical model takes into account various factors affecting the radial sinusoidal sine and amplitude of the radial air gap, and does not need to radially segment the permanent magnet to consider the influence of the surface eccentricity of the permanent magnet pole on the air gap magnetic field. Compared with the sub-domain method, it is simple and time-saving, while maintaining high calculation accuracy, which provides a reference for the optimization design of surface-mount permanent magnet motor.
|
Received: 29 June 2018
Published: 26 September 2019
|
|
|
|
|
[1] Yamazaki K, Kumagai M.Torque analysis of interior permanentmagnet synchronous motors by considering cross-magnetization: variation in torque components with permanent-magnet configurations[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7): 3192-3201. [2] Colin Debruyne, Maria Polikarpova, Stijn Deramme- laere, et al. Evaluation of the efficiency of line-start permanentmagnet machines as a function of the operating temperature[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 4443-4454. [3] Zhou Yu, Li Huaishu, Wang Wei, et al.Improved method for calculating magnetic field of surface- mounted permanent magnet machines accounting for slots and eccentric magnet pole[J]. Journal of Electrical Engineering & Technology, 2015, 10(3): 1025-1034. [4] 左曙光, 刘晓璇, 于明湖, 等. 永磁同步电机电磁振动数值预测与分析[J]. 电工技术学报, 2017, 32(1): 159-167. Zuo Shuguang, Liu Xiaoxuan, Yu Minghu, et al.Numerical prediction and analysis of electromagnetic vibration in permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 159-167. [5] 陈益广, 韩柏然, 沈勇环, 等. 永磁同步推进电机电磁振动分析[J]. 电工技术学报, 2017, 32(23): 16-22. Chen Yiguang, Han Bairan, Shen Yonghuan, et al.Electromagnetic vibration analysis of permanent magnet synchronous propulsion motor[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(23): 16-22. [6] 金亮, 王飞, 杨庆新, 等. 永磁同步电机性能分析的典型深度学习模型与训练方法[J]. 电工技术学报, 2018, 33(增刊1): 41-48. Jin Liang, Wang Fei, Yang Qingxin, et al.Typical deep learning model and training method for per- formance analysis of permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 29(S1): 41-48. [7] 刘计龙, 肖飞, 沈洋, 等. 永磁同步电机无位置传感器控制技术研究综述[J]. 电工技术学报, 2017, 32(16): 76-88. Liu Jilong, Xiao Fei, Shen Yang, et al.Position- sensorless control technology of permanent-magnet synchronous motor-a review[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 76-88. [8] 凌在迅, 周理兵, 张毅, 等. 笼型转子屏蔽感应电机电磁场及参数研究(二): 二维多层电磁场模型及解析计算[J]. 电工技术学报, 2018, 33(17): 4016-4028. Ling Zaixun, Zhou Libing, Zhang Yi, et al.Parameters determination and electromagnetic field analysis of canned solid-rotor induction motor(2): 2D-multilayer electromagnetic model and its analytical calculation[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4016-4028. [9] Rahman M M, Kim K T, Hur J.Design and optimization of neodymium-free SPOKE-type motor with segmented wing-shaped PM[J]. IEEE Transa- ctions on Magnetics, 2014, 50(2): 865-868. [10] Galioto S J, Reddy P B, EL-Refaie A M, et al. Effect of magnet types on performance of high-speed spoke interior-permanent-magnet machines designed for traction applications[J]. IEEE Transactions on Industry Applications, 2015, 51(3): 2148-2160. [11] Wang K, Zhu Z Q, Ombach G.Torque enhancement of surface-mounted permanent magnet machine using third-order harmonic[J]. IEEE Transactions on Magnetics, 2014, 50(3): 104-113. [12] Wang K, Zhu Z Q, Ombach G, et al.Optimal rotor shape with third harmonic for maximizing torque and minimizing torque ripple in IPM motors[J]. IEEE Transactions on Industrial Electronics, 2012, 8(12): 397-403. [13] Xia Changliang, Zhang Zhen, Geng Qiang.Analytical modeling and analysis of surface mounted permanent magnet machines with skewed slots[J]. IEEE Transactions on Magnetics, 2015, 51(5): 1-8. [14] Tessarolo A, Mezzarobba M, Menis R.Modeling, analysis, and testing of a novel spoke-type interior permanent magnet motor with improved flux weakening capability[J]. IEEE Transactions on Magnetics, 2015, 51(4): 1-10. [15] Liang Jinghui, Zhang Xiaofeng, Qiao Mingzhong, et al.Optimal design and multifield coupling analysis of propelling motor used in a novel integrated motor propeller[J]. IEEE Transactions on Magnetics, 2013, 49(7): 5742-5748. [16] Duan Yao, Dan M Ionel.A review of recent deve- lopments in electrical machine design optimization methods with a permanent magnet synchronous motor benchmark study[J]. IEEE Transactions on Magnetics, 2013, 49(3): 1268-1275. [17] 王凯, 孙海阳, 张露锋, 等. 永磁同步电机转子磁极优化技术综述[J]. 中国电机工程学报, 2017, 37(24): 7304-7318. Wang Kai, Sun Haiyang, Zhang Lufeng, et al.An overview of rotor pole optimization techniques for permanent magnet synchronous machines[J]. Pro- ceedings of the CSEE, 2017, 37(24): 7304-7318. [18] Chaithongsuk S, Takorabet N, Meibody-Tabar F.On the use of pulse width modulation method for the elimination of flux densityharmonics in the air-gap of surface PM motors[J]. IEEE Transactions on Magnetics, 2010, 45(3): 1736-1739. [19] Jahns T M, Soong W L.Pulsating torque minimization techniques for permanent magnet AC motor drives-a review[J]. IEEE Transactions on Industrial Electronics, 1996, 43(2): 321-330. [20] Lubin T, Mezani S, Rezzoug A.2-D exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots[J]. IEEE Transactions on Magnetics, 2011, 47(2): 479-492. [21] 徐媛媛, 葛红娟, 荆岩. 永磁同步电机偏心磁极优化设计[J]. 哈尔滨工程大学学报, 2013, 34(7): 873-877. Xu Yuanyuan, Ge Hongjuan, Jing Yan.Optimal design of eccentric magnet pole for permanent- magnet synchronous motors[J]. Journal of Harbin Engineering University, 2013, 34(7): 873-877. [22] Wu Lijian, Zhu Ziqiang.Analytical modeling of surface-mounted PM machines accounting for magnet shaping and varied magnet property distribution[J]. IEEE Transactions on Magnetics, 2014, 50(7): 1-11. [23] Zhou Yu, Li Huaishu, Meng Guangwei.Analytical calculation of magnetic field and cogging torque in surface-mounted permanent-magnet machines accounting for any eccentric rotor shape[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3438-3447. [24] Zhou Yu, Li Huaishu, Ren Ningning, et al.Analytical calculation and optimization of magnetic field in spoke-type permanent-magnet machines accounting for eccentric pole-arc shape[J]. IEEE Transactions on Magnetics, 2017, 53(9): 1-7. [25] 王秀和. 永磁电机[M]. 北京: 中国电力出版社, 2011. |
|
|
|