|
|
Effect Analysis of Transcranial Magneto-Acousto-Electrical Stimulation Parameters on Neural Firing Patterns |
Zhang Shuai1, 2, Cui Kun1, 2, Shi Xun1, 2, Wang Zhuo1, 2, Xu Guizhi1, 2 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China |
|
|
Abstract Transcranial magneto-acousto-electrical stimulation (TMAES) is a new non-invasive brain control method with greater stimulation depth and good focusing, which combines ultrasound and static magnetic field in the brain nerve tissue. In order to explore the effect of TMAES on the state of brain nerve excitation, based on the H-H neuron model, the effects of TMAES on the neuron discharge mode under different emission parameters were simulated, and the local field potential of rats was collected to analyze the power spectrum of the neurons. The simulation results show that different parameters of ultrasonic stimulation of neurons produce different discharge patterns. The results of animal experiments show that both the parameters of ultrasound and static magnetic field have certain effects on the stimulation effect of TMAES, and the effects are different. For specific neural regulation, this paper can provide theoretical guidance for obtaining optimal TMAES stimulus parameters.
|
Received: 06 June 2018
Published: 26 September 2019
|
|
|
|
|
[1] 伊国胜, 王江, 魏熙乐, 等. 无创式脑调制的神经效应研究进展[J]. 科学通报, 2016, 61(8): 819-834. Yi Guosheng, Wang Jiang, Wei Xile, et al.Developments of neural effects induced by noninvasive brain modulation[J]. Chinese Science Bulletin, 2016, 61(8): 819-834. [2] 张帅, 侯琬姣, 张雪莹, 等. 基于真实乳腺模型的感应式磁声成像正问题[J]. 电工技术学报, 2016, 31(24): 126-133. Zhang Shuai, Hou Wanjiao, Zhang Xueying, et al.Forward problem in magnetoacoustic tomography with magnetic induction based on real model of breast[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 126-133. [3] 黄欣, 刘国强, 夏慧, 等. 感应式磁声成像的脉冲磁场研究[J]. 电工技术学报, 2013, 28(2): 67-72. Huang Xin, Liu Guoqiang, Xia Hui, et al.Study of pulsed magnetic field used in magnetioacoustic tomography with magnetic induction[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 67-72. [4] Li Guofeng, Zhao Huixia, Zhou Hui, et al.Improved anatomical specificity of non-invasive neuro- stimulation by high frequency (5MHz) ultrasound[J]. Scientific Reports, 2016, 6: 24738. [5] 郭磊, 陈云阁, 王瑶, 等. 基于C_0复杂度的磁刺激内关穴的脑功能网络构建与分析[J]. 电工技术学报, 2017, 32(12): 155-163. Guo Lei, Chen Yunge, Wang Yao, et al.Construction and analysis of brain functional network based on C_0 complexity under magnetic stimulation at acupoint of neiguan[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 155-163. [6] 李江涛, 曹辉, 郑敏军, 等. 多通道经颅磁刺激线圈阵列的驱动与控制[J]. 电工技术学报, 2017, 32(22): 158-165. Li Jiangtao, Cao Hui, Zheng Minjun, et al.The drive and control of multi-channel transcranial magnetic stimulation coil array[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 158-165. [7] 郭磊, 王瑶, 于洪丽, 等. 基于近似熵的磁刺激穴位脑功能网络构建与分析[J]. 电工技术学报, 2015, 30(10): 31-38. Guo Lei, Wang Yao, Yu Hongli, et al.Brain functional network based on approximate entropy of EEG under magnetic stimulation at acupuncture point[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 31-38. [8] Kim H, Chiu A, Lee S D, et al.Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters[J]. Brain Stimulation, 2014, 7(5): 748-756. [9] Rezayat E, Toostani I G.A review on brain stimulation using low intensity focused ultrasound[J]. Basic & Clinical Neuroscience, 2016, 7(3): 187-194. [10] Yoo S S, Bystritsky A, Lee J H, et al.Focused ultrasound modulates region-specific brain activity[J]. Neuroimage, 2011, 56(3): 1267-1275. [11] Bystritsky A, Korb A S.A review of low-intensity transcranial focused ultrasound for clinical appli- cations[J]. Current Behavioral Neuroscience Reports, 2015, 2(2): 60-66. [12] Norton S J.Can ultrasound be used to stimulate nerve tissue?[J]. BioMedical Engineering OnLine, 2003, 2(1): 6-14. [13] 杨少华, 刘军, 张虹淼, 等. 一种基于磁声电相互耦合的神经电流检测方法[J]. 仪器仪表学报, 2005, 26(8): 31-32, 42. Yang Shaohua, Liu Jun, Zhang Hongmiao, et al.A method of coupling of magnetics, acoustics and electrics for the measurement of neural currents[J]. Chinese Journal of Scientific Instrument, 2005, 26(8): 31-32, 42. [14] 李慧雨, 周晓青, 张顺起, 等. 基于磁声耦合效应的聚焦电刺激方法的初探[J]. 生物医学工程研究, 2015, 34(4): 201-206. Li Huiyu, Zhou Xiaoqing, Zhang Shunqi, et al.Approach for focused electric stimulation based on the magneto-acoustic effect[J]. Jouma of Biomedical Engineering Research, 2015, 34(4): 201-206. [15] Yuan Yi, Li Xiaoli.Theoretical analysis of trans- cranial hall-effect stimulation based on passive cable model[J]. Chinese Physics B, 2015, 24(12): 373-378. [16] Yuan Yi, Pang N, Chen Y, et al.A phase-locking analysis of neuronal firing rhythms with transcranial magneto-acoustical stimulation based on the hodgkin- huxley neuron model[J]. Frontiers in Computational Neuroscience, 2017, 11(1): 1-6. [17] Zhang Shuai, Cui Kun, Zhang Xueying, et al.Effect of transcranial ultrasonic-magnetic stimulation on two types of neural firing behaviors in modified izhikevich model[J]. IEEE Transactions on Magnetics, 2018, 53(3): 5000204. [18] Hodgkin A L, Huxley A F.A quantitative description of membrane current and its application to con- duction and excitation in nerve[J]. Bulletin of Mathematical Biology, 1990, 117(1): 500-544. [19] Yi G S, Wang J, Han C X, et al.Spiking patterns of a minimal neuron to ELF sinusoidal electric field[J]. Applied Mathematical Modelling, 2012, 36(8): 3673-3684. [20] Dayan P, Abbott L.Theoretical neuroscience: com- putational and mathematical modeling of neural systems[J]. Journal of Cognitive Neuroscience, 2003, 15(1): 154-155. [21] Koch C, Schutter E.Biophysics of computation: information processing in single neurons[J]. Nature, 1999, 398(6729): 678. [22] 姚舜, 刘海龙, 陈传平, 等. 局部场电位和微分特性影响下神经元网络发放锋电位的检测[J]. 计算机与数字工程, 2005, 33(12): 19-23. Yao Shun, Liu Hailong, Chen Chuanping, et al.Neural net-work spike detection under effect of local field potential and derivative[J]. Computer & Digital Engineering, 2005, 33(12): 19-23. [23] 张丙淑, 随力, 黄思佳. 恐惧记忆的形成对大鼠内侧前额叶皮层局部场电位的影响[J]. 中国生物医学工程学报, 2017, 36(1): 53-58. Zhang Bingshu, Sui Li, Huang Sijia.Effects of fear memory formation on local field potential in rat prefrontal cortex[J]. Chinese Journal of Biomedical Engineering, 2017, 36(1): 53-58. [24] 周沙, 景亮. 基于矩特征与概率神经网络的局部放电模式识别[J]. 电力系统保护与控制, 2016, 44(3): 98-102. Zhou Sha, Jing Liang.Pattern recognition of partial discharge based on moment features and probabilistic neural network[J]. Power System Protection and Control, 2016, 44(3): 98-102. [25] 田野. 基于动量因子的神经网络群电流负荷预测模型[J]. 电力系统保护与控制, 2016, 44(17): 31-38. Tian Ye.A forecasting model for current load of neural network group based upon momentum factor[J]. Power System Protection and Control, 2016, 44(17): 31-38. [26] 孟安波, 胡函武, 刘向东. 基于纵横交叉算法优化神经网络的负荷预测模型[J]. 电力系统保护与控制, 2016, 44(7): 102-106. Meng Anbo, Hu Hanwu, Liu Xiangdong.Short-term load forecasting using neural network based on wavelets and crisscross optimization algorithm[J]. Power System Protection and Control, 2016, 44(7): 102-106. |
|
|
|