|
|
Mathematical Model and Characteristics of Low Current DC Fault Arc |
XiongLan1, Zeng Zeyu1, Yang Jun2, Zhong Yuming1, Guo Ke1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China;; 2. State Grid Electric Power Research Institute of Qinghai Power Supply Branch Xining 810000 China |
|
|
Abstract DC arc is generated by failure connection, poor contacts and insulation failure of cables, it is difficult to extinguish and to be detected, and the extreme high temperature roused by arc may cause fire. It is of great significance to study DC arc characteristics. In this paper, a DC arc fault test platform was set up. The influence of voltage, current of DC power supply and electrode distance on arc characteristics is studied from abundant experiment data. It is proved that current and gap distance were the main factors affecting arc characteristics, and the DC voltage may guarantee whether arc is generated and maintained or not. Meanwhile, numerical fitting arc models as arc resistance R versus I (current) and L (electrode distance) and also V=f(I, L), P=g(I, L) are established respectively. The R-I, V-I and P-I characteristics curves are almost consistent with the discrete experimental data. Finally, based on the equilibrium plasma theory and Chapman-Enskog method, σ(conductivity)-T(temperature) curves are obtained for different arc dielectric medium such as pure air and air with different percentage of copper vapor. Then software COMSOL is used to simulate and analyze the arc resistance under different electrode spacing. The simulation results with copper vapor are almost consistent with the measured data. The results of this paper provide a theoretical basis for further study on the general characteristics of DC arc fault.
|
Received: 01 July 2018
Published: 17 July 2019
|
|
|
|
|
[1] Guardado J L, Maximov S G, Melgoza E, et al.An improved arc model before current zero based on the combined mayr and cassie arc models[J]. IEEE Transactions on Power Delivery, 2005, 20(1):138-142. [2] Mayr O.Beitrage zur theorie des statischen und des dynamischen lichthogens[J]. Archiv für Elektrotechnik,1943,37(12): 588-608. [3] Mayr O.Über die Theorie des lichtbogens und seiner löschung[J]. Elektrotechnisc -he Zeitschrift, 1943,64(16): 645-652. [4] Habedank U.On the mathematical description of arc behaviour in the vicinity of current zero[J]. etzArchiv,1988,10(11): 339-343. [5] Van d S L, Rutgers W R, Koreman C G A. A physical arc model for the simulation of current zero behavior of high-voltage circuit breakers[J]. IEEE Transactions on Power Delivery, 1992, 7(2):1016-1022. [6] Schwarz J.Dynamisches verhalten eines gasbeblas turbulenzbestimmten schaltlichtbogens[J]. ETZ-A, 1971, 92(3):389-391. [7] Smeets R P P, Kertesz V. Evaluation of high-voltage circuit breaker performance with a validated arc model[J]. IEE Proceedings-Generation, Transmission and Distribution, 2000, 147(2):121-125. [8] Schavemaker P H, Van d S L. An improved Mayr-type arc model based on current-zero measurements circuit breakers[J]. IEEE Transactions onPower Delivery, 2000, 15(2):580-584. [9] Gammon T, Lee W J, Zhang Zhenyuan, et al.A review of commonly used DC arc models[J]. IEEE Transactions on Industry Applications, 2015, 51(2): 1. [10] Li Mei, Wu Yi, Wu Yifei, et al.MHD modeling of fault arc in a closed container[J]. IEEE Transactions on Plasma Science, 2014, 42(10):2714-2715. [11] 翟国富, 薄凯, 李庆楠,等. 直流电弧运动过程中重击穿现象及机理研究[J]. 电工技术学报, 2016, 31(11):105-113. Zhai Guofu, Bo Kai, Li Qingnan, et al.Research on restriking phenomena and mechanism during DC arc motion process[J].Transactions of China Electrotechnical Society, 2016, 31(11):105-113. [12] Yao X, Ji S, Herrera L, et al.DC arc fault: characteristic study and fault recognition[C]//2011 1st International Conference on Electric Power Equipment-Switching Technology, Xi'an, 2011:387-390. [13] Ammerman R F, Gammon T, Sen P K, et al.DC-arc models and incident-energy calculations[J]. IEEE Transactions on Industry Applications, 2009, 46(5):1810-1819. [14] Nottingham W B.A new equation for the static characteristic of the normal electric arc[J]. Journal of the American Institute of Electrical Engineers, 2013, 42(1):12-19. [15] 吴翊, 荣命哲, 王小华,等. 触头打开过程中低压空气电弧等离子体的动态分析[J]. 电工技术学报, 2008, 23(5):12-17. Wu Yi, Rong Mingzhe, Wang Xiaohua, et al.Dynamic analysis of low-voltage air arc plasma during contact opening process[J]. Transactions of China Electrotechnical Society, 2008, 23(5):12-17. [16] 荣命哲, 吴翊, 杨飞,等. 开关电弧电流零区非平衡态等离子体仿真研究现状[J]. 电工技术学报, 2017, 32(2):1-12. Rong Mingzhe, Wu Yi, Yang Fei, et al.Review on the simulation method of non-equilibrium arc plasma during current zero period in the circuit breaker[J].Transactions of China Electrotechnical Society, 2017, 32(2):1-12. [17] 王立军, 贾申利, 史宗谦,等. 大电流真空电弧磁流体动力学模型与仿真[J]. 中国电机工程学报, 2006, 26(22):174-180. Wang Lijun, Jia Shenli, Shi Zongqian, et al.Magnet hydro dynamic model and simulation of high-current vacuum arc[J]. Proceedings of the CSEE, 2006, 26(22):174-180. [18] 荣命哲, 仲林林, 王小华,等. 平衡态与非平衡态电弧等离子体微观特性计算研究综述[J]. 电工技术学报, 2016, 31(19):54-65. Rong Mingzhe, Zhong Linlin, Wang Xiaohua, et al.Review of microscopic property calculation of equilibrium and non-equilibrium arc plasma[J].Transactions of China Electrotechnical Society, 2016, 31(19):54-65. [19] 王伟宗, 吴翊, 荣命哲,等. 局域热力学平衡态空气电弧等离子体输运参数计算研究[J]. 物理学报, 2012, 61(10):272-281. Wang Weizong, Wu Yi, Rong Mingzhe, et al.Theoretical computation studies for transport properties of air plasmas[J]. Acta Physica Sinica,2012, 61(10):272-281. [20] Zhang Xiaoning, Li Heping, Murphy A B, et al. A numerical model of non-equilibrium thermal plasmas. I. transport properties[J]. Physics of Plasmas, 2013, 20(3):033508(1)-033508(11). [21] 张晓宁, 李和平, Murphy A B, 等. 用于非平衡热等离子体数值模拟的物理数学模型[J]. 高电压技术, 2013, 39(7):1640-1648. Zhang Xiaoning, Li Heping, Murphy A B, et al.Physical-mathematical model used for simulations of non-equilibrium thermal plasmas[J].High Voltage Engineering, 2013, 39(7):1640-1648. [22] Cressault Y.Influence of metallic vapours on the properties of air thermal plasmas[J]. Plasma Sources Science & Technology,2008, 17(3): 35016. |
|
|
|