|
|
A High Impedance Fault Detection Method for Flexible DC Distribution Network |
Wang Xiaowei1, 2, Gao Jie3, Wu Lei2, Song Guobing2, Wei Yanfang1 |
1. School of Electrical Engineering and Automation Henan Polytechnic UniversityJiaozuo 454000 China; 2. School of Electrical Engineering Xi’anJiaotong University Xi’an 710049 China;; 3. Wenzhou Power Supply Company Zhejiang Electric Power Company Wenzhou 325000 China |
|
|
Abstract Flexible DC distribution network has acquired more interest and development in recent years, with the emergency of lots of renewable energy and direct current (DC) loads, as for the high impedance fault (HIF) detection in flexible DC distribution network, it not gathers attention from the industry and research community. Hence, this paper proposed an improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method. Firstly, it utilizes CEEMDAN to extract the first intrinsic mode function component (IMF1) of transient zero mode current (TZMC), and obtainedthe mutation singular point by calculating one order differences among IMF1, then, it distinguishes fault stage from normal condition (NC) to calculate the slopes near the singular point, and compare slopes with start threshold. Secondly, uses Prony algorithm to identify the IMF1 parameters, which including characteristic frequency component (CFC) and DC component, besides, calculates the energy ratio between CFC and DC to distinguish small impedance fault (SIF), medium impedance fault (MIF), high impedance fault (HIF) and load switching (LS). Lots of simulation experiments and field data prove that the paper can detect HIF effectively, and has some advantages compared with other methods in feature extraction, detection accuracy and calculation speed and so on.
|
Received: 01 July 2018
Published: 17 July 2019
|
|
|
|
|
[1] 耿建昭, 王宾, 董新洲, 等.中性点有效接地配电网高阻接地故障特征分析及检测[J]. 电力系统自动化, 2013, 37(16): 85-91. Geng Jianzhao, Wang Bin, Dong Xinzhou, et al.Analysis and detection of high impedance grounding fault in neutral point effectively grounding distribution network[J]. Automation of Electric Power Systems, 2013, 37(16): 85-91. [2] Macedo J R, Resende J W, Bissochi C A, et al.Proposition of an interharmonic-based methodology for high-impedance fault detection in distribution systems[J]. IET Generation, Transmission & Distribution, 2015, 9(16): 2593-2601. [3] Li Yajie, Meng Xiaoli, Song Xiaohui.Application of signal processing and analysis in detecting single line-to-ground (SLG) fault location in high-impedance grounded distribution network[J]. IET Generation, Transmission & Distribution, 2016, 10(2): 382-389. [4] 王宾, 倪江, 王海港, 等.输电线路弧光高阻接地故障单端测距分析[J]. 中国电机工程学报, 2017, 37(5): 1333-1341. Wang Bin, Ni Jiang, Wang Haigang, et al.Single end fault location for high impedance are grounding fault in transmission line[J]. Proceedings of the CSEE, 2017, 37(5): 1333-1341. [5] Sarlak M, Shahrtash S M.High impedance fault detection using combination of multi-layer perceptron neural networks based on multi-resolution morphological gradient features of current waveform[J]. IET Generation, Transmission & Distribution, 2011, 5(5): 588-595. [6] Gautam S, Brahma S M.Detection of high impedance fault in power distribution systems using mathematical morphology[J]. IEEE Transactions on Power Systems, 2013, 28(2): 1226-1234. [7] Kavaskar S, Nalin K.Combined mathematical morphology and data mining based high impedance fault detection[J]. Energy Procedia, 2017, 117(1): 417-423. [8] Namdari F, Salehi M.High-speed protection scheme based on initial current traveling wave for transmission lines employing mathematical morphology[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 246-253. [9] Moravej J, Zahra M, Seyed H.DT-CWT based event feature extraction for high impedance faults detection in distribution system[J]. International Transactions on Electrical Energy Systems, 2015, 25(12): 3288-3303. [10] Costa F B, Souza B A, Brito N S, et al.Real-time detection of transients induced by high-impedance faults based on the boundary wavelet transform[J]. IEEE Transactions on Industry Applications, 2015, 51(6): 5312-5323. [11] Chen J, Phung T, Blackburn T, et al.Detection of high impedance faults using current transformers for sensing and identification based on features extracted using wavelet transform[J]. IET Generation, Transmission & Distribution, 2016, 10(12): 2990-2998. [12] 朱晓娟, 林圣, 张姝, 等.基于小波能量矩的高阻接地故障检测方法[J]. 电力自动化设备, 2016, 36(12): 161-168. Zhu Xiaojuan, Lin Sheng, Zhang Shu, et al.High impedance grounding fault detection based on wavelet energy moment[J]. Electric Power Automation Equipment, 2016, 36(12): 161-168. [13] Pan Qi, Slavisa J, Lezama J, et al.Discrete wavelet transform optimal parameters estimation for arc fault detection in low-voltage residential power networks[J]. Electric Power Systems Research, 2017, 143(1): 130-139. [14] Santos W C, Lopes F V, Brito N S, et al.High impedance fault identification on distribution networks[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 23-32. [15] Kar S, Samantaray S R.Time-frequency transform-based differential scheme for microgrid protection[J]. IET Generation, Transmission & Distribution, 2014, 8(2): 310-320. [16] Routray P, Mishra M, Rout P K.High impedance fault detection in radial distribution system using S-Transform and neural network[C]//2015 IEEE Power, Communication and Information Technology Conference, Bhubaneswar, Bhubaneswar, India, 2015, 545-551. [17] 王晓卫, 田书, 李玉东, 等.基于S变换特征频率序列的小电流接地系统故障区段定位方法[J]. 电力系统保护与控制, 2012, 40(14): 109-115. Wang Xiaowei, Tian Shu, Li Yudong, et al.A novel fault section location method for small current neutral grounding system based on characteristic frequency sequence of S-transform[J]. Power System Protection and Control, 2012, 40(14): 109-115. [18] 李斌, 何佳伟, 李晔, 等.基于边界特性的多端柔性直流配电系统单端量保护方案[J]. 中国电机工程学报, 2016, 36(21): 5741-5749, 6016. Li Bin, He Jiawei, Li Ye, et al.Single-ended protection scheme based on boundary characteristic for the multi-terminal VSC-based DC distribution system[J]. Proceedings of the CSEE, 2016, 36(21): 5741-5749, 6016. [19] Torres M, Colominas M, Schlotthauer G, et al.A complete ensemble empirical mode decomposition with adaptive noise[C]//Proceeding of IEEE International Conference on Acoustics, Speech and Signal Processing, Prague,Czechia, 2011: 4144-4147. [20] Chaari O, Bastard P, Meunier M.Prony's method: an efficient tool for the analysis of earth fault currents in Petersen coil protected networks[J]. IEEE Transactions on Power Delivery, 1995, 10(3): 1234-1241. [21] 戴志辉, 葛红波, 严思齐, 等. 柔性直流配电网故障分析[J]. 电工技术学报, 2018, 33(8): 1863-1874. Dai Zhihui, Ge Hongbo, Yan Siqi, et al.Fault analysis of flexible DC distribution system[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1863-1874. [22] 贺悝, 李勇, 曹一家, 等. 考虑分布式储能参与的直流配电网电压柔性控制策略[J]. 电工技术学报, 2017, 32(10): 101-110. He Li, Li Yong, Cao Yijia, et al.Flexible voltage control strategy of DC distribution network considering distributed energy storge[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 101-110. [23] 王帅, 毕天姝, 贾科. 基于主动脉冲的MMC-HVDC单极接地故障测距[J]. 电工技术学报, 2017, 32(1): 12-19. Wang Shuai, Bi Tianshu, Jia Ke.Single terminal fault location for MMC-HVDC transmission line using active pulse[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 12-19. [24] 张希鹏, 邰能灵, 郑晓冬, 等. 基于WEMTR的柔性直流输电线路故障测距[J]. 电工技术学报, 2019, 34(3): 589-598. Zhang Xipeng, Tai Nengling, Zheng Xiaodong, et al.Fault location in VSC-HVDC transmission lines based on WEMTR[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 589-598. [25] 刘子文, 苗世洪, 范志华, 等. 不平衡电网电压下柔性直流输电系统功率滑模补偿策略[J].电工技术学报, 2018, 33(14): 3296-3305. Liu Ziwen, Miao Shihong, Fan Zhihua, et al.Power sliding mode compensation strategy of VSC-HVDC under unbalanced grid voltage[J]. Transactions of China Electrotechnical Society, 2018, 33(14): 3296-3305. |
|
|
|