|
|
Strict and Non-Strict Security Boundary of Distribution Network |
Xiao Jun1, Xiao Jucheng1, Zhang Liyuan2, Zu Guoqiang1, Zhang Baoqiang1 |
1. Key Laboratory of Smart Grid of Ministry of Education Tianjin UniversityTianjin 300072 China; 2. West Power Supply Branch of Tianjin Power Company of State Grid Tianjin 300190 China |
|
|
Abstract This paper proposes the definition and calculation methods for strict and non-strict security boundary of distribution network. Firstly, according to the criticality degree of the security boundary point, the strict and non-strict boundary are defined respectively. Strict boundary has the property of strict criticality, while non-strict boundary has the property of non-strict criticality, which together constitute a complete security boundary. Secondly, by analyzing the causes of strict boundaries, this paper divided them into two types: intersection type and independence type. Generally, strict boundaries of most distribution networks are intersection boundaries that are formed by intersection of multiple hyperplanes. Only in some special cases with an extremely small scale, the independence strict boundary can be formed when all loads are limited by the same constraint after N-1. Thirdly, the boundary type judgment theorem and inferences based on the determination matrix are presented. Then, an algorithm is presented for solving the strict and non-strict boundaries. That is, all the intersection boundaries are judged by using the determination matrix firstly, and the complete strict boundary is obtained, and then the complement of the strict boundary is solved to obtain the complete non-strict boundary. Finally, case study verifies the proposed method. Moreover, strict and non-strict boundaries in the cases are shown by visualization.
|
Received: 26 February 2018
Published: 28 June 2019
|
|
|
|
|
[1] 余贻鑫. 安全域的方法学及实用性结果[J]. 天津大学学报, 2003, 36(5): 525-528. Yu Yixin.Methodology of security region and practical results[J]. Journal of Tianjin Univerisity, 2003, 36(5): 525-528. [2] Wu F F, Kumagai S.Steady-state security regions of power-systems[J]. IEEE Transactions on Circuits and Systems, 1982, 29(11): 703-711. [3] Xiao Jun, Gu Wenzhuo, Wang Chengshan, et al.Distribution system security region: definition, model and security assessment[J]. IET Generation, Trans- mission & Distribution, 2012, 6(10): 1029-1035. [4] 肖峻, 祖国强, 白冠男, 等. 配电网安全域的数学定义与存在性证明[J]. 中国电机工程学报, 2016, 36(18): 4828-4836. Xiao Jun, Zu Guoqiang, Bai Guannan, et al.Mathematical definition and existence of distribution system security region[J]. Proceedings of the CSEE, 2016, 36(18): 4828-4836. [5] 陶顺, 陈鹏伟, 肖湘宁, 等. 智能配电网不确定性建模与供电特征优化技术综述[J]. 电工技术学报, 2017, 32(10): 77-91. Tao Shun, Chen Pengwei, Xiao Xiangning, et al.Review on uncertainty modeling and power supply characteristics optimization technology in smart distribution network[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 77-91. [6] 谢仕炜, 胡志坚, 王珏莹, 等. 基于不确定随机网络理论的主动配电网多目标规划模型及其求解方法[J]. 电工技术学报, 2019, 34(5): 1038-1054. Xie Shiwei, Hu Zhijian, Wang Jueying, et al.A multi-objective planning model of active distribution network based on uncertain random network theory and its solution algorithm[J]. Transactions of China Electrotechnical Society, 2019, 34(5): 1038-1054. [7] 姜涛, 贾宏杰, 姜懿郎, 等. 跨区互联电网热稳定安全域边界近似方法[J]. 电工技术学报, 2016, 31(8): 134-146. Jiang Tao, Jia Hongjie, Jiang Yilang, et al.Appro- ximating method of wide area thermal security region boundary in Bulk power system[J]. Transactions of China Electrotechnical Society, 2016, 31(8): 134-146. [8] 肖峻, 贺琪博, 苏步芸. 基于安全域的智能配电网安全高效运行模式[J]. 电力系统自动化, 2014, 38(19): 52-60. Xiao Jun, He Qibo, Su Buyun.A secure and efficient operation mode for smart distribution networks based on security region method[J]. Automation of Electric Power Systems, 2014, 38(19): 52-60. [9] 范黎, 隗震, 娄素华, 等. 配电项目最大供电能力及增供电量效益的评估[J]. 电工技术学报, 2017, 32(增刊1): 84-91. Fan Li, Wei Zhen, Lou Suhua, et al.The evaluation for maximum power supply capability and benefit of increasing power supply of distribution system[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 84-91. [10] 刘佳, 徐谦, 程浩忠, 等. 计及主动配电网转供能力的可再生电源双层优化规划[J]. 电工技术学报, 2017, 32(9): 179-188. Liu Jia, Xu Qian, Cheng Haozhong, et al.Bi-level optimal renewable energy sources planning con- sidering active distribution network power transfer capability[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 179-188. [11] 肖晗, 叶志浩, 马凡, 等. 舰船直流区域配电系统安全运行边界计算与分析[J]. 电工技术学报, 2016, 31(20): 202-208. Xiao Han, Ye Zhihao, Ma Fan, et al.Calculation and analysis of the safe operation boundary of shipboard DC zonal electric distribution system[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 202-208. [12] Xiao Jun, Zu Guoqiang, Gong Xiaoxu, et al.Observation of security region boundary for smart distribution grid[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 1731-1738. [13] 肖峻, 贡晓旭, 贺琪博, 等. 智能配电网N-1安全边界拓扑性质及边界算法[J]. 中国电机工程学报, 2014, 34(4): 545-554. Xiao Jun, Gong Xiaoxu, He Qibo, et al.Topological characteristics and algorithm of N-1 security boundary for smart distribution network[J]. Pro- ceedings of the CSEE, 2014, 34(4): 545-554. [14] 肖峻, 苏步芸, 贡晓旭, 等. 基于馈线互联关系的配电网安全域模型[J]. 电力系统保护与控制, 2015, 43(20): 36-44. Xiao Jun, Su Buyun, Gong Xiaoxu, et al.Model of distribution system security region based on inter- connections of feeders[J]. Power System Protection and Control, 2015, 43(20): 36-44. [15] 肖峻, 张宝强, 张苗苗, 等. 配电网安全边界的产生机理[J]. 中国电机工程学报, 2017, 37(20): 5922-5932. Xiao Jun, Zhang Baoqiang, Zhang Miaomiao, et al.The formation of distribution network security boundaries[J]. Proceedings of the CSEE, 2017, 37(20): 5922-5932. [16] 肖峻, 甄国栋, 王博, 等. 配电网的安全距离: 定义与方法[J]. 中国电机工程学报, 2017, 37(10): 2840-2851. Xiao Jun, Zhen Guodong, Wang Bo, et al.Security distance of distribution network: definition and method[J]. Proceedings of the CSEE, 2017, 37(10): 2840-2851. [17] 陈珂宁, 吴文传, 郭昆亚, 等. 基于负荷恢复策略的配电网N-1安全评估[J]. 电网技术, 2013, 37(11): 3241-3246. Chen Kening, Wu Wenchuan, Guo Kunya, et al.Security evaluation under N-1 for distribution net- work based on load restoration strategies[J]. Power System Technology, 2013, 37(11): 3241-3246. [18] 刘佳, 程浩忠, 肖峻, 等. 计及N-1安全准则的智能配电网多目标重构策略[J]. 电力系统自动化, 2016, 40(7): 9-15. Liu Jia, Cheng Haozhong, Xiao Jun, et al.A multi- objective reconfiguration strategy for smart distri- bution network considering N-1 security criterion[J]. Automation of Electric Power Systems, 2016, 40(7): 9-15. [19] Q/GDW 156-2006, 城市电力网规划设计导则[S]. 2006. [20] Munkres J R.Topology[M]. 2nd ed. New Jersey: Prentice Hall Press, 2000. [21] 符秀华. 线性规划几种多余约束条件的判别法[J]. 河南电大, 1994(1): 19-20. Fu Xiuhua.Several criterion methods for redundant constraints in linear programming[J]. Henan Televi- sion Broadcasting University, 1994(1): 19-20. |
|
|
|