|
|
Photovoltaic System Global Maximum Power Point Tracking Method Based on the Global Learning Adaptive Bacteria Foraging Algorithm |
Shang Liqun, Zhu Weiwei |
School of Electrical and Control Engineering Xi’an University of Science and TechnologyXi’an 710054 China |
|
|
Abstract In order to maximize the output power of photovoltaic power generation system, global maximum power point tracking (MPPT) technology is widely used. When the external weather conditions such as local shading change, the photovoltaic power characteristic curve will appear multi-peak phenomenon, which increases the complexity of the maximum power tracking process. Traditional MPPT methods and soft computing techniques may not be able to track the global maximum power point (GMPP) due to the fixed step size and randomness. Therefore, a global learning adaptive bacterial foraging algorithm was proposed in this paper. The global learning mechanism and adaptive step strategy were introduced into the traditional bacterial foraging algorithm to improve the accuracy and convergence speed of the algorithm. At the same time, the direct control model was adopted, and a two-step MPPT control strategy was proposed to avoid the power oscillation when the output power of the photovoltaic system tends to the maximum point, which could improve the output efficiency of the system. Simulation results show that the proposed method can track GMPP accurately and quickly under dynamic environment.
|
Received: 12 March 2018
Published: 28 June 2019
|
|
|
|
|
[1] Ram J P, Babu T S, Rajasekar N.A comprehensive review on solar PV maximum power point tracking techniques[J]. Renewable & Sustainable Energy Reviews, 2017, 67: 826-847. [2] 赵书强, 王明雨, 胡永强, 等. 基于不确定理论的光伏出力研究[J]. 电工技术学报, 2015, 30(16): 213-220. Zhao Shuqiang, Wang Mingyu, Hu Yongqiang, et al.Research on the prediction of PV output based on uncertainty theory[J]. Transactions of China Electro- technical Society, 2015, 30(16): 213-220. [3] 李建林, 籍天明, 孔令达, 等. 光伏发电数据挖掘中的跨度研究[J]. 电工技术学报, 2015, 30(14): 450-456. Li Jianlin, Ji Tianming, Kong Lingda, et al.Span determining of photovoltaic generation data mining[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 450-456. [4] Kjær S B.Evaluation of the “hill climbing” and the “incremental conductance” maximum power point trackers for photovoltaic power systems[J]. IEEE Transactions on Energy Conversion, 2012, 27(4): 922-929. [5] 杨永恒, 周克亮. 光伏电池建模及MPPT控制策略[J]. 电工技术学报, 2011, 26(增刊1): 229-234. Yang Yongheng, Zhu Keliang.Photovoltaic cell modeling and MPPT control strategies[J]. Transa- ctions of China Electrotechnical Society, 2011, 26(S1): 229-234. [6] Tey K S, Mekhilef S.Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level[J]. Solar Energy, 2014, 101(1): 333-342. [7] 王云平, 李颖, 阮新波. 基于局部阴影情况下光伏阵列电流特性的最大功率点跟踪算法[J]. 电工技术学报, 2016, 31(14): 201-210. Wang Yunping, Li Ying, Ruan Xinbo.Maximum power point tracking algorithm for photovoltaic array under partial shading based on current property[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 201-210. [8] Patel H, Agarwal V.Maximum power point tracking scheme for PV systems operating under partially shaded conditions[J]. IEEE Transactions on Indu- strial Electronics, 2014, 55(4): 1689-1698. [9] Nguyen T L, Low K S.A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems[J]. IEEE Transa- ctions on Industrial Electronics, 2010, 57(10): 3456-3467. [10] 吴志程, 江智军, 杨晓辉. 一种基于功率闭环控制的改进全局MPPT方法[J]. 电力系统保护与控制, 2018, 46(1): 57-62. Wu Zhicheng, Jiang Zhijun, Yang Xiaohui.An improved global MPPT method on power closed-loop control[J]. Power System Protection and Control, 2018, 46(1): 57-62. [11] Ishaque K, Salam Z.A deterministic particle swarm optimization maximum power point tracker for photovoltaic system under partial shading con- dition[J]. IEEE Transactions on Industrial Electronics, 2013, 60(8): 3195-3206. [12] Venugopalan R, Krishnakumar N, Sudhakarbabu T, et al.Modified particle swarm optimization technique based maximum power point tracking for uniform and under partial shading condition[J]. Applied Soft Computing, 2015, 34: 613-624. [13] 朱艳伟, 石新春, 但扬清, 等. 粒子群优化算法在光伏阵列多峰最大功率点跟踪中的应用[J]. 中国电机工程学报, 2012, 32(4): 42-48. Zhu Yanwei, Shi Xinchun, Dan Yangqing, et al.Application of PSO algorithm in global MPPT for PV array[J]. Proceedings of the CSEE, 2012, 32(4): 42-48. [14] 杨德友, 崔冬晓, 蔡国伟. 基于云控制器的燃料电池最大功率跟踪策略[J]. 电工技术学报, 2018, 33(14): 3362-3370. Yang Deyou, Cui Dongxiao, Cai Guowei.A maximum power point tracking technology for fuel cells using cloud model based intelligent controller[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(14): 3362-3370. [15] Sundareswaran K, Peddapati S, Palani S.MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies[J]. IEEE Transactions on Energy Conversion, 2014, 29(2): 463-472. [16] 盛四清, 陈玉良, 张晶晶. 基于差分进化人工蜂群算法的光伏最大功率跟踪策略研究[J]. 电力系统保护与控制, 2018, 46(11): 23-29. Sheng Siqing, Chen Yuliang, Zhang Jingjing.Research on maximum power point tracking strategy based on differential evolution artificial bee colony algorithm of photovoltaic system[J]. Power System Protection and Control, 2018, 46(11): 23-29. [17] Sundareswaran K, Vigneshkumar V, Sankar P, et al.Development of an improved P&O algorithm assisted through a colony of foraging ants for MPPT in PV system[J]. IEEE Transactions on Industrial Infor- matics, 2016, 12(1): 187-200. [18] Seyedmahmoudian M, Rahmani R, Mekhilef S, et al.Simulation and hardware implementation of new maximum power point tracking technique for partially shaded PV system using hybrid DEPSO method[J]. IEEE Transactions on Sustainable Energy, 2015, 6(3): 850-862. [19] Passino K M.Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems, 2002, 22(3): 52-67. [20] 谢平平, 李银红, 刘晓娟, 等. 基于社会学习自适应细菌觅食算法的互联电网AGC最优PI/PID控制器设计[J]. 中国电机工程学报, 2016, 36(20): 5440-5448. Xie Pingping, Li Yinhong, Liu Xiaojuan, et al.Optimal PI/PID controller design of AGC based on social learning adaptive bacteria foraging algorithm for inter-connected power grids[J]. Proceedings of the CSEE, 2016, 36(20): 5440-5448. [21] 张明锐, 蒋利明, 孙华, 等. 基于免疫细菌觅食算法的大容量光伏阵列GMPPT算法[J]. 中国电机工程学报, 2016, 36(1): 104-111. Zhang Mingrui, Jiang Liming, Sun Hua, et al.Large-capacity photovoltaic array’s GMPPT tech- nology based on the immune bacterial foraging optimization algorithm[J]. Proceedings of the CSEE, 2016, 36(1): 104-111. |
|
|
|