|
|
Discharge Characteristics Simulation Method of Equipotential Worker-Tower Structure Gap |
Zhang Qiushi1, Wang Linong1, Fang Yaqi1, Liu Kai2, Gao Jiachen1 |
1. School of Electrical Engineering Wuhan University Wuhan 430072 China; 2. China Electrical Power Research Institute Wuhan 430074 China |
|
|
Abstract In the paper, the gap between the equipotential worker and tower structure in live working on EHV and UHV high voltage were chosen as the study object, the calculation method of function R for rod-plane gap considering the proximity effect of conductors was derived based on Rizk leader inception model, a structural coefficient Tg was proposed to quantify the effect characterization of irregular tower structure, the calculation model of leader inception voltage and discharge voltage for equipotential worker-tower structure gap was established. Taking 6 split-conductors and wine cup tower as the study object, the validity of the established model was verified based on the full-scale experimental data of the gaps between equipotential worker in different poses and tower structures, the calculation error was not more than 6.5% and tended to decrease with increasing gap length. The result shows that the proposed calculation model can provide a reliable theoretical method for the research on discharge characteristics of equipotential worker-tower structure gap. Finally, the effect of tower structure and human posture on discharge characteristics of the working gap were analyzed by the proposed model, then some reasonable recommendations for live working operation were presented.
|
Received: 28 April 2018
Published: 14 June 2019
|
|
|
|
|
[1] 胡毅, 刘凯, 彭勇, 等. 带电作业关键技术研究进展与趋势[J]. 高电压技术, 2014, 40(7): 1921-1931. Hu Yi, Liu Kai, Peng Yong, et al.Research status and development trend of live working key technology[J]. High Voltage Engineering, 2014, 40(7): 1921-1931. [2] DL/T876—2004 带电作业绝缘配合导则[S]. 2004. [3] 胡毅, 王力农, 邵瑰玮, 等. 1000kV级交流输电线路带电作业的试验研究[J]. 电网技术, 2007, 31(6): 8-13. Hu Yi, Wang Linong, Shao Guiwei, et al.Experimental investigation on live working for 1000kV AC transmission line[J]. Power System Technology, 2007, 31(6): 8-13. [4] 王力农, 胡毅, 邵瑰玮, 等. 1000kV输电线路带电作业安全距离研究[J]. 高电压技术, 2006, 32(12): 78-82. Wang Linong, Hu Yi, Shao Guiwei, et al.Research on minimum approach distance for live working on 1000kV AC transmission line[J]. High Voltage Engineering, 2006, 32(12): 78-82. [5] 刘凯, 胡毅, 肖宾, 等. 1000kV交流紧凑型输电线路带电作业安全距离试验分析[J]. 高电压技术, 2011, 37(8): 1857-1861. Liu Kai, Hu Yi, Xiao Bin, et al.Experimental analysis of live working safety distance on 1000kV AC compact transmission line[J]. High Voltage Engineering, 2011, 37(8): 1857-1861. [6] 胡毅, 刘凯, 王力农, 等. 1000kV同塔双回输电线路带电作业技术试验研究[J]. 高电压技术, 2010, 36(11): 2668-2673. Hu Yi, Liu Kai, Wang Linong, et al.Experimental research of live working on 1000kV double circuit AC transmission line on the same tower[J]. High Voltage Engineering, 2010, 36(11): 2668-2673. [7] 胡毅, 王力农, 刘凯, 等. 750kV输电线路带电作业安全距离的研究[J]. 高电压技术, 2007, 33(11): 150-154. Hu Yi, Wang Linong, Liu Kai, et al.Research of minimum approach distance for live working on 750kV AC transmission lines[J]. High Voltage Engineering, 2007, 33(11): 150-154. [8] 胡毅, 王力农, 刘凯, 等. 750kV同塔双回输电线路带电作业技术研究[J]. 高电压技术, 2009, 35(2): 373-378. Hu Yi, Wang Linong, Liu Kai, et al.Research of live working on 750 kV double circuit AC transmission line[J]. High Voltage Engineering, 2009, 35(2): 373-378. [9] 邓慰, 孟刚, 陈勇, 等. 高海拔地区500kV 单回输电线路空气间隙放电特性[J]. 电工技术学报, 2013, 28(9): 255-260. Deng Wei, Meng Gang, Chen Yong, et al.Flashovercharacteristic for high altitude 500kV single-circuit transmission line[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 255-260. [10] 杨亚琦, 李卫国, 夏喻, 等. 低气压下长间隙交直流放电特性研究[J]. 电工技术学报, 2018, 33(5): 1143-1150. Yang Yaqi, Li Weiguo, Xia Yu, et al.Research of AC and DC discharge characteristics of long gap under low pressure[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1143-1150. [11] Zhuang Chijie, Zeng Rong, Zhang Bo, et al.The optimization of entering route for live working on 750kV transmission towers by space electric-field analysis[J]. IEEE Transactions on Power Delivery, 2010, 25(2): 987-994. [12] 方雅琪, 彭勇, 苏梓铭, 等. 特高压紧凑型线路带电作业人员体表电场仿真计算[J]. 中国电力, 2015, 48(10): 87-93. Fang Yaqi, Peng Yong, Su Ziming, et al.Computation of body surface electric field during live working on 1000kV AC compact transmission lines[J]. Electric Power, 2015, 48(10): 87-93. [13] Carrara G, Thione L.Switching surge strength of large long air gaps: a physical approach[J]. IEEE Transactions on Power Apparatus and systems, 1976, 95(2): 512-524. [14] Rizk F A M. A model for switching impulse leader inception and breakdown of long air-gaps[J]. IEEE Transactions on Power Delivery, 1989, 4(1): 596-606. [15] Rizk F A M. Switching surge strength of air insulation:leader inception criterion[J]. IEEE Transactions on Power Delivery, 1989, 4(4): 2187-2195. [16] Gallimberti I.The mechanism of the long spark formation[J]. Journal of Physics Colloques, 1979, 40(C7): 193-250. [17] Bondiou A, Gallimberti I.Theoretical modelling of the development of the positive spark in long gaps[J]. Applied Physics, 1994, 27: 1252-1266. [18] Goelian N, Lalande P, Bondiou A, et al.A simplified model for the simulation of positive-spark development in long air gaps[J]. Journal of Physics D: Applied Physics, 1997, 30(17): 2441-2452. [19] Becerra M, Cooray V.A self-consistent upward leader propagation model[J]. Journal of Physics D: Applied Physics, 2006, 39(16): 3708-3715. [20] Becerra M, Cooray V.A simplified physical model to determine the lightning upward connecting leader inception[J]. IEEE Transactions on Power Delivery, 2006, 21(2): 897-908. [21] Fofana I, Beroual A.A predictive model of the positive discharge in long air gaps under pure and oscillating impulse shapes[J]. Journal of Physics D: Applied Physics, 1997, 30(11): 1653-1667. [22] 李敏, 汪沨, 许松枝, 等. 基于分形理论的SF6/N2混合气体放电仿真[J]. 电工技术学报, 2016, 31(24): 88-95. Li Min, Wang Feng, Xu Songzhi, et al.Simulation discharge on SF6/N2 gas mixtures based on fractal theory[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 88-95. [23] 汪沨, 李敏, 李锰, 等. 基于ETG-通量校正传输法的短间隙SF6/N2 混合气体流注放电数值仿真研究[J]. 电工技术学报, 2016, 31(6): 232-241. Wang Feng, Li Min, Li Meng, et al.Numerical simulation of short gap streamer discharge in SF6/N2 gas mixtures based on Eur-Taylor-Galerkin-Flux corrected transport method[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 232-241. [24] 邱志斌, 阮江军, 黄道春, 等. 基于支持向量机的棒-板空气间隙击穿电压预测方法及其应用[J]. 电工技术学报, 2017, 32(19): 220-228. Qiu Zhibin, Ruan Jiangjun, Huang Daochun, et al.Breakdown voltage prediction method of rod-plane air gaps based on support vector machine and its applications[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 220-228. [25] 薛浩然, 张珂珩, 李斌, 等. 基于布谷鸟算法和支持向量机的变压器故障诊断[J]. 电力系统保护与控制, 2015, 43(8): 8-13. Xue Haoran, Zhang Keheng, Li Bin, et al.Fault diagnosis of transformer based on the cuckoo search and support vector machine[J]. Power System Protection and Control, 2015, 43(8): 8-13. [26] 齐伟强, 李俭, 陈柏超, 等. 基于COMSOL 的变压器中超声波传播特性[J]. 电工技术学报, 2017, 32(19): 220-228. Qi Weiqiang, Li Jian, Chen Baichao, et al.Ultrasonic wave propagation characteristics of the transformer based on COMSOL[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 220-228. [27] 陈勇, 万启发, 孟刚, 等. 750kV输电线路杆塔间隙和塔宽对操作冲击放电电压的影响[J]. 电网与水力发电发展, 2007: 8-11. Chen Yong, Wan Qifa, Meng Gang, et al.Influences of tower gap and tower leg width on switching impulse discharge voltage of 750kV transmission line[J]. Power System and Clean Energy, 2007: 8-11. |
|
|
|