|
|
Effect of Hyperbranched Polyester Grafting Nanosilica on Dielectric Properties of Epoxy Resin |
Yang Guoqing1, 2, Li Yang1, 2, Wang Deyi1, 2, Liu Jing2, Li Jiaxin2 |
1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China Xi’an University of Technology Xi’an 710048 China;; 2. Institute of Water Resource and Hydroelectric Engineering Xi’an University of Technology Xi’an 710048 China; |
|
|
Abstract To improve the interfacial properties of nanosilica/epoxy resin and the insulating behavior of composite materials, hyperbranched polyester and silane coupling agent were used to modify the surfaces of nanosilica in this study. Nanosilica/epoxy resin composites with different filling ratios were prepared, their dielectric properties under different modification methods were investigated. XPS and FTIR spectra show that the hyperbranched polyester can be grafted to nanosilica surface by 40 min of blending reaction under 100℃. SEM observation suggests that within 10% filling quality ratio, nanosilica particles treated by hyperbranched polyester are not prone to agglomerate in epoxy resin. TSDC measurement indicates that 0.86~1.15 eV deep traps are present in the modified nanocomposites. Moreover, the AC breakdown strength of the epoxy resin composites filled with polyester-treated nanosilica is 19% higher than that of the silane-treated composites at a filling quality ratio of 7%. The dielectric loss factor and relative permittivity of composites are also decreased to 0.58% and 4.38 at 5% filling quality ratio. The results mentioned above show that active carboxyl groups can be implanted to nanosilica surfaces by the hyperbranched polyester treatment. Terminal carboxyl radicals with long chains effectively inhibit the agglomeration of nanosilica and enhance the bonding strength between inorganic particles and epoxy matrix. As a result, trap energy of epoxy resin composites is increased, and the insulating behaviors of the epoxy resin composites are obviously improved.
|
Received: 01 March 2018
Published: 21 March 2019
|
|
|
|
|
[1] 王有元, 王施又, 陆国俊, 等. 纳米AlN改性对干式变压器环氧树脂绝缘性能的影响[J]. 电工技术学报, 2017, 32(7): 174-180. Wang Youyuan, Wang Shiyou, Lu Guojun, et al.Influence of nano-AlN modification on the insulation properties of epoxy resin of dry-type transformers[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 174-180. [2] 杜伯学, 张苗苗, 姜惠兰. 环氧树脂在低温环境下的电树枝生长特性[J]. 高电压技术, 2016, 42(2): 478-484. Du Boxue, Zhang Miaomiao, Jiang Huilan.Growth characteristics of electrical tree in epoxy resin under low temperature[J]. High Voltage Engineering, 2016, 42(2): 478-484. [3] 王旗, 李喆, 尹毅. 微、纳米无机颗粒/环氧树脂复合材料击穿强性能[J]. 电工技术学报, 2014, 29(12): 230-235. Wang Qi, Li Zhe, Yin Yi.The effect of micro and nano inorganic filler on the breakdown strength of epoxy resin[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 230-235. [4] 王旗, 尹毅, 李喆, 等. 微/纳米氧化铝/环氧树脂复合材料热导率和击穿强度的研究[J]. 绝缘材料, 2013, 46(2): 49-52. Wang Qi, Yin Yi, Li Zhe, et al.Thermal conductivity and breakdown strength study of micro/nano-alumina/epoxy resin composite[J]. Insulation Material, 2013, 46(2): 49-52. [5] Li Zhe, Okamoto K, Ohki Y, et al.The role of nano and micro particles on partial discharge and breakdown strength in epoxy composites[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(3): 675-681. [6] Tanaka T.Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5): 914-928. [7] Okazaki Y, Kozako M, Hikita M, et al.Effects of addition of nano-scale alumina and silica fillers on thermal conductivity and dielectric strength of epoxy/alumina microcomposites[C]//IEEE International Conference on Solid Dielectrics, Potsdam, 2010: 1-4. [8] Singha S, Thomas M J.Dielectric properties of epoxy- Al2O3 nanocomposite system for packaging applications[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(2): 373-385. [9] 杨国清, 郭玥, 王德意, 等. 不均匀电场下纳米氧化锌改性环氧树脂的绝缘特性[J]. 高电压技术, 2017, 43(9): 1-6. Yang Guoqing, Guo Yue, Wang Deyi, et al.Dielectric characteristics of epoxy composites modified with nano zinc oxide in non-uniform electrical field[J]. High Voltage Engineering, 2017, 43(9): 1-6. [10] 钟琼霞, 兰莉, 吴建东, 等. 不同表面处理剂对纳米MgO/LDPE空间电荷行为的影响[J]. 高电压技术, 2014, 40(9): 2668-2677. Zhong Qiongxia, Lan Li, Wu Jiandong, et al.Effect of different surface treatments on space charge behavior in nano-MgO/LDPE[J]. High Voltage Engineering, 2014, 40(9): 2668-2677. [11] Li He, Wang Chuang, Guo Zihao, et al.Effects of silane coupling agent on the electrical properties of silica/epoxy nanocomposites[C]//IEEE International Conference on Dielectrics, Montpellier, 2016: 1036-1039. [12] 汤国虎, 叶巧明, 连红芳. 无机纳米粉体表面改性研究现状[J]. 材料导报, 2013, 17(增刊1): 33-35. Tang Guohu, Ye Qiaoming, Lian Hongfang.Current research progress in organic nanosize powder surface modification[J]. Materials Review, 2013, 17(S1): 33-35. [13] 罗杨, 吴广宁, 彭佳, 等. 聚合物纳米复合电介质的界面性能研究进展[J]. 高电压技术, 2012, 38(9): 2455-2464. Luo Yang, Wu Guangning, Peng Jia, et al.Research progress on interface properties of polymer nanodielectrics[J]. High Voltage Engineering, 2012, 38(9): 2455-2464. [14] 柏舸, 廖瑞金, 刘娜, 等. 纳米氮化铝改性对芳纶1313绝缘纸介电特性的影响[J]. 高电压技术, 2015, 41(2): 461-467. Bai Ge, Liao Ruijin, Liu Na, et al.Influence of nano-AlN modification on the dielectric properties of meta-aramid paper[J]. High Voltage Engineering, 2015, 41(2): 461-467. [15] Murugaraj P, Mainwaring D, Morahuertas N.Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability[J]. Journal of Applied Physics, 2005, 98(5): 409-923. [16] 张明艳, 王晨, 吴淑龙, 等. 碳纳米管、蒙脱土共掺杂环氧树脂复合材料介电性能研究[J]. 电工技术学报, 2016, 31(10): 151-158. Zhang Mingyan, Wang Chen, Wu Shulong, et al.Research on dielectric properties of epoxy resin composites doped with carbon nanotubes and montmorillonite[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 151-158. [17] 赵辉, 罗小军, 罗运军. 超支化聚合物接枝改性碳纳米管其分散性能[J]. 应用化学, 2008, 25(11): 1361-1365. Zhao Hui, Luo Xiaojun, Luo Yunjun.Carbon nanotubes grafted with hyperbranched poly(amine-ester) and dispersion properties[J]. Chinese Journal of Applied Chemistry, 2008, 25(11): 1361-1365. [18] 刘海军, 陈晓婷, 蔡宏强. 超支化聚酰胺改性多壁碳纳米管的制备与表征[J]. 化工新型材料, 2015, 43(9): 92-94. Liu Haijun, Chen Xiaoting, Cai Hongqiang.Preparation and characterization of multi-walled carbon nanotubes modified by hyperbranched polyamides[J]. New Chemical Materials, 2015, 43(9): 92-94. [19] 向晶晶, 童身毅. 纳米SiO2表面接枝超支化聚酯研究[J]. 有机硅材料, 2008, 22(6): 360-364. Xiang Jingjing, Tong Shenyi.Grafting of hyperbranched polyester onto nano-sized silicon oxide surface[J]. Silicine Material, 2008, 22(6): 360-364. [20] 亓学奎, 王欣欣, 曲晶明, 等. 端氨基超支化聚合物接枝纳米TiO2复合材料的制备与表征[J]. 材料导报, 2015, 11(29): 5-8. Qi Xuekui, Wang Xinxin, Qu Jingming, et al.Preparation and characterization of composites of nanosized TiO2 grafted by amino-terminal hyperbranched polymers[J]. Materials Review, 2015, 11(29): 5-8. [21] Huang Xingyi, Peng Peng, Peng Wenyi, et al.Thermal conductivity and dielectric properties of epoxy composites with hyperbranched polymer modified boron nitride nanoplatelets[C]//IEEE International Conference on Condition Monitoring and Diagnosis, Bali, 2012: 1089-1092. [22] 张颖, 彭健, 林勇, 等. 长链超支化聚酯改性纳米SiO2及在丁苯橡胶中的应用[J]. 高分子学报, 2016(6): 707-714. Zhang Ying, Peng Jian, Lin Yong, et al.Preparation of hyperbranched polyester modified nano-SiO2 and its application in SBR[J]. Acta Polymerica Sinica, 2016(6): 707-714. [23] 车剑飞, 谢毅哲, 杨绪杰, 等. 纳米二氧化硅表面接枝的X射线光电子能谱研究[J]. 南京理工大学学报, 2005, 29(3): 330-333. Che Jianfei, Xie Yizhe, Yang Xujie, et al.XPS of modified nano-SiO2 by surface grafting[J]. Journal of Nanjing University of Science and Technology, 2005, 29(3): 330-333. [24] Yang Guoqing, Li Yang, Wang Deyi, et al.Trap energies and AC breakdown properties of epoxy resin filled with nanosilica modified by hyperbranched-polyester[C]//Dielectrics and Electrical Insulation, Tokyo, 2017: 1-4. [25] 吴旭辉, 吴广宁, 杨雁, 等. 等离子体改性纳米粒子对聚酰亚胺复合薄膜陷阱特性影响[J]. 中国电机工程学报, 2018, 38(11): 3410-3418. Wu Xuhui, Wu Guangning, Yang Yan, et al.Influence of nanoparticles plasma modification on trap properties of polyimide composite films[J]. Proceedings of the CSEE, 2018, 38(11): 3410-3418. [26] Turner M R, Duguet E, Labrugère C.Characterization of silane-modified ZrO2 powder surfaces[J]. Surface & Interface Analysis, 1997, 25(12): 917-923. [27] 赵洪, 闫志雨, 杨佳明, 等. 纳米复合聚乙烯材料中的两相界面及其电荷行为[J]. 高电压技术, 2017, 43(9): 2781-2790. Zhao Hong, Yan Zhiyu, Yang Jiaming, et al.Two-phase interface and its charging behavior in polyethylene nanocomposite[J]. High Voltage Engineering, 2017, 43(9): 2781-2790. [28] 杜伯学, 韩晨磊, 李进, 等. 高压直流电缆聚乙烯绝缘材料研究现状[J/OL]. 电工技术学报, https:// doi.org/10.19595/j.cnki.1000-6753. tces.180073. Du Boxue, Han Chenlei, Li Jin, et al.Research status of polyethylene insulation for high voltage direct current cables[J/OL]. Transactions of China Electrotechnical Society, https:// doi.org/ 10 19595/j. cnki. 1000-6753. tces.180073. [29] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al.Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 1-12. [30] Lei Qingquan, Tian Fuqiang, Yang Chun, et al.Modified isothermal discharge current theory and its application in the determination of trap level distribution in polyimide films[J]. Journal of Electrostatics, 2010, 68(3): 243-248. [31] 袁端磊, 闵道敏, 黄印, 等. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响[J]. 物理学报, 2017, 66(9): 097701. Yuan Duanlei, Min Daomin, Huang Yin, et al.Influence of filler content on trap and space charge properties of epoxy resin nanocomposites[J]. Acta Physica Sinica, 2017, 66(9): 097701. [32] 廖瑞金, 柳海滨, 柏舸, 等. 纳米SiO2/芳纶绝缘纸复合材料的空间电荷特性和介电性能[J]. 电工技术学报, 2016, 31(12): 40-48. Liao Ruijin, Liu Haibin, Bai Ge, et al.Space charge characteristics and dielectric properties of nano-SiO2/aramid paper composite[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 40-48. [33] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. Wang Weiwang, Li Shengtao, Liu Wenfeng.Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. 通信作者:杨国清, 男,1979年生,博士,副教授,研究方向为高电压技术和电力设备在线监测技术.E-mail:163usher@163.com |
|
|
|