|
|
Primary Research on Drag Reduction of Train Based on Plasma Flow |
Gao Guoqiang1, Yan Xin1, Peng Kaisheng1, Wei Wenfu1, Wang Yangming2 |
1. School of Electrical Engineering Southwest Jiaotong University Chengdu 610031 China; 2. State Grid Chengdu Power Supply Company Chengdu 610031 China |
|
|
Abstract As the speed of high-speed trains continues to increase, the aerodynamic drag has become a key factor affecting the speed and energy consumption of trains. Compared with the conventional flow control technology, surface dielectric barrier discharge (SDBD) has numerous advantages such as no moving parts, fast time response and lightweight, which shows a strong potential in suppressing the boundary layer separation of the high-speed train. In order to investigate the effects of SDBD on flow control of the high-speed train, both experiments and numerical simulation have been conducted. Based on experiments, the flow control effects of different electrode shapes on the train model have been compared. The aspects of the discharge power consumption, discharge intensity and induced airflow velocity are considered. The results indicate that the linear and serrate electrodes have higher power consumption and discharge intensity than the square and serpentine electrodes, while the square and serpentine electrodes have higher electromechanical efficiency than the others. Visualization of the airflow field around a train model with different electrodes was realized by the smoke visualization experiment. It is found that the square electrode and the serpentine electrode have stronger flow separation inhibition than the linear and serrated ones. In addition, the flow around a train model was simulated based on Navier-Stokes equations, where the plasma actuator was solved by the Suzen model. The results implicate that the plasma actuator has a primary effect on drag reduction of the high-speed train, and with the increase of applied voltage, the suppression effect of flow separation is more remarkable.
|
Received: 21 January 2018
Published: 01 March 2019
|
|
|
|
|
[1] 田红旗. 列车空气动力学[M]. 北京: 中国铁道出版社, 2007. [2] 姚拴宝, 郭迪龙, 杨国伟, 等. 高速列车气动阻力分布特性研究[J]. 铁道学报, 2012, 34(7): 18-23. Yao Shuanbao, Guo Dilong, Yang Guowei, et al.Distribution of high-speed train aerodynamic drag[J]. Journal of the China Railway Society, 2012, 34(7): 18-23. [3] 田红旗, 周丹, 许平. 列车空气动力性能与流线型头部外形[J]. 中国铁道科学, 2006, 27(3): 47-55. Tian Hongqi, Zhou Dan, Xu Ping.Aerodynamic performance and streamlined head shape of train[J]. China Railway Science, 2006, 27(3): 47-55. [4] 商克峰, 王浩, 岳帅, 等. 结构及供电电源对沿面介质阻挡放电装置放电特性及臭氧生成的影响[J]. 电工技术学报, 2017, 32(2): 53-60. Shang Kefeng, Wang Hao, Yue Shuai, et al.Effect of configuration and power supply on the discharge characteristics and ozone generation of a surface dielectric barrier discharge device[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 53-60. [5] Roth J R, Sherman D M, Wilkinson S P.Elec- trohydrodynamic flow control with a glow-discharge surface plasma[J]. AIAA Journal, 2000, 38(7): 1166-1172. [6] 吴阳阳, 贾敏, 王蔚龙, 等. 新型介质阻挡放电等离子体激励器的放电与诱导流动特性实验[J]. 电工技术学报, 2016, 31(24): 45-53. Wu Yangyang, Jia Min, Wang Weilong, et al.Experimental research on the discharge and induced flow characteristics of a new dielectric barrier discharge plasma actuator[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 45-53. [7] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.A review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [8] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing.Influences of CF4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(7): 159-165. [9] Moreau E.Airflow control by non-thermal plasma actuators[J]. Journal of Physics D: Applied Physics, 2007, 40(3): 605. [10] 高国强, 彭开晟, 董磊, 等. 电压幅值和频率对表面介质阻挡放电与气动特性的影响[J]. 电工技术学报, 2017, 32(8): 55-62. Gao Guoqiang, Peng Kaisheng, Dong Lei, et al.Experimental of surface dielectric barrier discharge and aerodynamic characteristics at different voltage amplitude and frequency[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 55-62. [11] 邵涛, 章程, 于洋, 等. 空气中纳秒脉冲均匀介质阻挡放电研究[J]. 高电压技术, 2012, 38(5): 1045-1050. Shao Tao, Zhang Cheng, Yu Yang, et al.Study on homoge-neous nanosecond-pluse dielectric barrier discharge in atmospheric air[J]. High Voltage Engineering, 2012, 38(5): 1045-1050. [12] 方志, 解向前, 邱毓昌. 大气压空气中均匀介质阻挡放电的产生及放电特性[J]. 中国电机工程学报, 2010, 30(28): 126-132. Fang Zhi, Xie Xiangqian, Qiu Yuchang.Generation and characteristics of the homogeneous dielectric barrier discharge in air under atmospheric pressure[J]. Proceedings of the CSEE, 2010, 30(28): 126-132. [13] 杨波, 孙敏, 白敏菂. 介质阻挡放电等离子体抑制翼型流动分离的实验研究[J]. 高电压技术, 2014, 40(1): 212-218. Yang Bo, Sun Min, Bai Mindi.Experimental investigation of airfoil flow separation control by dielectric barrier discharge plasma actuator[J]. High Voltage Engineering, 2014, 40(1): 212-218. [14] 张攀峰, 王晋军, 施威毅, 等. 等离子体激励低速分离流动控制实验研究[J]. 实验流体力学, 2007, 21(2): 35-39. Zhang Panfeng, Wang Jinjun, Shi Weiyi, et al.Experimental study on the separation control by plasma actuator in subsonic flow[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 35-39. [15] Orlov D M, Apker T, He C, et al.Modeling and experiment of leading edge separation control using SDBD plasma actuators[C]//45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007: 877. [16] 车学科, 聂万胜, 侯志勇, 等. 地面试验模拟高空等离子体流动控制效果[J]. 航空学报, 2015, 36(2): 441-448. Che Xueke, Nie Wansheng, Hou Zhiyong, et al.High altitude plasma flow control simulation through ground experiment[J]. Acta Aeronautica ET Astro- nautica Sinica, 2015, 36(2): 441-448. [17] Post M L, Corke T C.Separation control using plasmas actuators-stationary and oscillating airfoils[C]// 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004: 0841. [18] Corke T, Mertz B, Patel M.Plasma flow control optimized airfoil[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2006: 1208. [19] Benard N, Moreau E.Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control[J]. Experiments in Fluids, 2014, 55(11): 1846. [20] Suzen Y B, Huang P G, Jacob J D, et al.Numerical simulations of plasma based flow control appli- cations[C]//35th AIAA Fluid Dynamics Conference and Exhibit, Ontario, Canada, 2005: 4633. [21] Lorriaux E, Bourabaa N, Monnoyer F.Aerodynamic optimization of railway motor coaches[C]//7th World Congress on Railway Research, Montréal, Canada, 2006. [22] 翟琪, 张正科, 蔡晋生, 等. 等离子体激励翼型分离流动控制数值模拟[J]. 气体物理, 2016, 1(2): 22-28. Zhai Qi, Zhang Zhengke, Cai Jinsheng, et al.Numerical simulation of plasma control of separated flows over airfoils[J]. Physics of Gases, 2016, 1(2): 22-28. |
|
|
|