|
|
Control Strategy for Improving Operation Energy Efficiency of Bow Thruster in Shipboard Microgrid |
Xiao Zhaoxia1, Li Huaimin1, Zhu Tianli1, Josep M. Guerrero2, Feng Ji3 |
1. Tianjin Key Laboratory of Advanced Technology of Electrical Engineering and Energy Tianjin Polytechnic University Tianjin 300387 China; 2. Department of Energy Technology Aalborg University Aalborg 9220 Denmark; 3. State Grid Tianjin Cable Company Tianjin 300300 China |
|
|
Abstract Considering that the impact of fast frequent start and stop of the shipboard electric bow thruster on the fuel efficiency and system stability in the shipboard microgrid, this paper proposes to add the battery storage in the DC bus of the bow thruster diver and supply for the driver of the bow thruster. The scheme can effectively reduce the capacity of diesel generators, improve fuel consumption efficiency, and reduce the disturbance of the voltage and frequency of the shipboard power system. At the same time, because the bow thruster can operate as a generator when braking, the battery storage can replace the consumption resistance and absorb the energy generated by the fast braking machine. An adaptive PI controller for the voltage loop is designed for three phase interleaved DC-DC converter to increase the load capacity of the converter. And this paper analyzes the selection range of controller parameters. Simulation results show that the controller can effectively suppress the voltage swell and sag of DC bus during the frequent start-up process of the bow thruster.
|
Received: 01 July 2018
Published: 15 February 2019
|
|
|
|
|
[1] Geertsma R D, Negenborn R R, Visser K, et al.Design and control of hybrid power and propulsion systems for smart ships: a review of developments[J]. Applied Energy, 2017, 194: 30-54. [2] Skjong E, Rodskar E, Molinas M, et al.The marine vessel’s electrical power system: from its birth to present day[J]. Proceedings of the IEEE, 2015, 103(12): 2410-2424. [3] Prenc R, Cuculić A, Baumgartner I.Advantages of using a DC power system on board ship[J]. Journal of Maritime & Transportation Sciences, 2016. [4] 孙建龙, 窦晓波, 张子仲, 等. 直流对等式微电网混合储能系统协调控制策略[J]. 电工技术学报, 2016, 31(4): 194-202. Sun Jianlong, Dou Xiaobo, Zhang Zizhong, et al.DC peer-to-peer coordinated control strategy of hybrid energy storage system for microgrid[J]. Transactions of China Electrotechnical Society, 2016, 31(4): 194-202. [5] 雷志方, 汪飞, 高艳霞, 等. 面向直流微网的双向DC-DC变换器研究现状和应用分析[J]. 电工技术学报, 2016, 31(22): 137-147. Lei Zhifang, Wang Fei, Gao Yanxia, et al.Research status and application analysis of bidirectional DC-DC converters in DC micro-grids[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(22): 137-147. [6] Mccoy T J.Trends in ship electric propulsion[C]// IEEE Power Engineering Society Summer Meeting, Chicago, USA, 2002, 1: 343-346. [7] Liu Wenzhao, Guerrero J M, Savaghebi M, et al.Impact of the voltage dips in shipboard microgrid power systems[C]//Industrial Electronics Society, IECON 2017-43rd Annual Conference of the IEEE, Beijing, China, 2017: 2287-2292. [8] Johansen T A, Bo T I, Mathiesen E, et al.Dynamic positioning system as dynamic energy storage on diesel-electric ships[J]. IEEE Transactions on Power Systems, 2014, 29(6): 3086-3091. [9] 肖百惠, 戴栋, 张波, 等. 负载突变情况下直流微网的分岔现象及分析[J]. 电工技术学报, 2016, 31(增刊2): 131-141. Xiao Baihui, Dai Dong, Zhang Bo, et al.Bifurcation and its analysis of DC micro-grid under abrupt load change[J]. Transactions of China Electrotechnical Society, 2016, 31(S2): 131-141. [10] 罗乐. 船舶电力系统建模与控制[D]. 武汉: 武汉理工大学, 2011. [11] 高海波. 船舶电力推进系统的建模与仿真[D]. 武汉: 武汉理工大学, 2008. [12] Bui V P, Kim Y B, Yong W C, et al.A study on automatic ship berthing system design[C]//Inter- national Conference on Networking, Sensing and Control, 2009: 181-184. [13] Moussodji J, De Bernardinis A.Electric hybridization of a bow thruster for river boat application[C]// Transportation Electrification Conference and Expo, Detroit, USA, 2015: 1-6 [14] 渠展展, 李卫国, 闫涛, 等. 三相交错式双向DC-DC储能变流器的研究[J]. 电力电子技术, 2012, 46(2): 77-79, 85. Qu Zhanzhan, Li Weiguo, Yan Tao, et al.Study of three-phase interleaved bi-directional DC/DC con- verter[J]. Power Electronics, 2012, 46(2): 77-79, 85. [15] Pipolo S, Bifaretti S, Lidozzi A, et al.Feed-forward control of a ZVT full bridge DC-DC converter[C]// IEEE International Conference on Environment and Electrical Engineering, Rome, Italy, 2015: 1041-1046. [16] 张虎, 张永昌, 夏波, 等. 基于空间矢量调制的感应电机无速度传感器模型预测磁链控制[J]. 电工技术学报, 2017, 32(3): 97-104. Zhang Hu, Zhang Yongchang, Xia Bo, et al.Speed sensorless model predictive flux control of induction motor drives based on space vector modulation[J]. Transactions of China Electrotechnical Society, 2017, 32(3): 97-104. [17] 王琛琛, 王堃, 游小杰, 等. 低开关频率下双三相感应电机矢量控制策略[J]. 电工技术学报, 2018, 33(8): 1732-1741. Wang Chenchen, Wang Kun, You Xiaojie, et al.Research on the synchronized SVPWM strategies under low switching frequency for dual stator induction machines[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1732-1741. [18] 谢文强, 韩民晓, 曹文远, 等. 储能换流器动态过程分析与前馈控制改进策略[J]. 电力系统自动化, 2018, 42(7): 178-184. Xie Wenqiang, Han Minxiao, Cao Wenyuan, et al.Dynamic process analysis and feedforward control improvement strategy for energy storage con- verters[J]. Automation of Electric Power Systems, 2018, 42(7): 178-184. [19] 支娜, 张辉, 肖曦, 等. 分布式控制的直流微电网系统级稳定性分析[J]. 中国电机工程学报, 2016, 36(2): 368-378. Zhi Na, Zhang Hui, Xiao Xi, et al.System-level stability analysis of DC microgrid with distributed control strategy[J]. Proceedings of the CSEE, 2016, 36(2): 368-378. [20] Rahimi A M, Emadi A.Active damping in DC/DC power electronic converters: a novel method to overcome the problems of constant power loads[J]. IEEE Transactions on Industrial Electronics, 2009, 56(5): 1428-1439. [21] Smogeli Ø N, Hansen J, Sørensen A J, et al.Anti-spin control for marine propulsion systems[C]//43rd IEEE Conference on Decision and Control, Nassau, Bahamas, 2004: 5348-5353. |
|
|
|