|
|
On-Line Inertia Identification of Servo System Based on Variable Period Recursive Least Square and Kalman Observer |
Yang Ming, Qu Wanying, Chen Yangyang, Xu Dianguo |
School of Electrical Engineering and Automation Harbin Institute of TechnologyHarbin 150001 China |
|
|
Abstract During the operation of AC servo system, the variation of system parameters and external disturbance will affect the performance of the system. The parameters of the system controller need to be adjusted in real time according to the system inertia. Therefore, it is of great importance to obtain the system inertia to achieve high performance servo system. In this paper, a variable period least square algorithm is proposed for on-line inertia identification, and the load torque is obtained by using Kalman observer. On the analysis of the quantization error of speed impact on the identification error, the speed difference is set as the criterion of identification algorithm implementation. The proposed method can obtain the inertia under low acceleration condition, and expand the scope of the identification algorithm. Simulation and experiment show that the proposed algorithm is effective.
|
Received: 28 June 2018
Published: 15 February 2019
|
|
|
|
|
[1] Tami R, Boutat D, Zheng G, et al.Rotor speed, load torque and parameters estimations of a permanent magnet synchronous motor using extended observer forms[J]. IET Control Theory & Applications, 2017, 11(9): 1485-1492. [2] 石有计. 一种改进的永磁同步电动机参数在线辨识方法[J]. 电气技术, 2017, 18(11): 91-95. Shi Youji.Improved method of on-line PMSM parameters identification[J]. Electrical Engineering, 2017, 18(11): 91-95. [3] 荀倩, 王培良, 李祖欣, 等. 基于递推最小二乘法的永磁伺服系统参数辨识[J]. 电工技术学报, 2016, 31(17): 161-169. Xun Qian, Wang Peiliang, Li Zuxin, et al.PMSM parameter identification based on recursive least square method[J]. Transactions of China Electro- technical Society, 2016, 31(17): 161-169. [4] 王璨, 杨明, 栾添瑞, 等. 双惯量弹性伺服系统外部机械参数辨识综述[J]. 中国电机工程学报, 2016, 36(3): 804-817. Wang Can, Yang Ming, Luan Tianrui, et al.A review of external mechanical parameter identification of two-mass elastic servo systems[J]. Proceedings of the CSEE, 2016, 36(3): 804-817. [5] 刘子剑. 伺服系统在线参数自整定及优化技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [6] Babau R, Boldea I, Miller T J E, et al. Complete parameter identification of large induction machines from no-load acceleration-deceleration tests[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 1962-1972. [7] 韩亚荣, 邱鑫, 朱德明. 永磁交流伺服系统转动惯量辨识方法[J]. 电工电能新技术, 2013, 32(3): 36-40, 80. Han Yarong, Qiu Xin, Zhu Deming.Inertia identi- fication methods for permanent magnetic AC servo system[J]. Advanced Technology of Electrical Engineering and Energy, 2013, 32(3): 36-40, 80. [8] Andoh F.Moment of inertia identification using the time average of the product of torque reference input and motor position[J]. IEEE Transactions on Power Electronics, 2007, 22(6): 2534-2542. [9] 陈炜, 郭照升, 夏长亮, 等. 基于转动惯量辨识的交流伺服系统自适应扰动观测器设计[J]. 电工技术学报, 2016, 31(16): 34-42. Chen Wei, Guo Zhaosheng, Xia Changliang, et al.Design of adaptive disturbance observer for AC servo system with inertia identification[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 34-42. [10] 李志斌, 赵金, 刘洋. 基于高精度朗道离散时间法的转动惯量辨识[J]. 电气传动, 2013, 43(11): 58-60. Li Zhibin, Zhao Jin, Liu Yang.Inertia identification based on high-precision Landau discrete-time recursive algorithm[J]. Electric Drive, 2013, 43(11): 58-60. [11] 徐东, 王田苗, 魏洪兴. 一种基于简化模型的永磁同步电机转动惯量辨识和误差补偿[J]. 电工技术学报, 2013, 28(2): 126-131. Xu Dong, Wang Tianmiao, Wei Hongxing.A simplified model based inertia identification algorithm with error compensation of permanent magnet synchronous motors[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 126-131. [12] 王少威, 万山明, 周理兵, 等. 利用蚁群算法辨识PMSM伺服系统负载转矩和转动惯量[J]. 电工技术学报, 2011, 26(6): 18-25. Wang Shaowei, Wan Shanming, Zhou Libing, et al.Identification of PMSM servo system’s load torque and moment of inertia by ant colony algorithm[J]. Transactions of China Electrotechnical Society, 2011, 26(6): 18-25. [13] Niu Li, Xu Dianguo, Yang Ming, et al.On-line inertia identification algorithm for pi parameters optimization in speed loop[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 849-859. [14] Perdomo M, Pacas M, Eutebach T, et al.Identi- fication of variable mechanical parameters using extended Kalman filters[C]//2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, 2013: 377-383. [15] Mola M, Khayatian A, Dehghani M.Identification and adaptive position control of two mass systems withunknown backlash[C]//Proceedings of the 21st Iranian Conference on Electrical Engineering, Mashhad, 2013: 1-6. [16] Saarakkala S, Hinkkanen M.Identification of two- mass mechanical systems using torque excitation: design and experimental evaluation[J]. IEEE Transa- ctions on Industry Applications, 2015, 51(5): 4180-4189. [17] Yang Ming, Liu Zirui, Long Jiang, et al.An algorithm for online inertia identification and load torque observation via adaptive Kalman observer- recursive least squares[J]. Energies, 2018, 11(4): 778. |
|
|
|