|
|
Disturbance Observer-Based Filter Backstepping Control with Low Speed Crawling for AC Servo System |
Yin Zhonggang1, Jin Haixu1, Zhang Yanping1, Liu Jing1, Ma Baohui2 |
1. College of Electrical Engineering Xi’an University of Technology Xi’an 710048 China; 2. State Key Laboratory of Large Electric Drive System and Equipment Technology Tianshui 741020 China |
|
|
Abstract When the running speed of AC servo system is below a critical value, the position will alternate among stasis, slide, and speed fluctuations, which is called low speed crawling. For the non-linear feature of the AC servo system, the position controller and the speed controller are designed by backstepping control method. Due to the impact of friction torque, load disturbance and parameter perturbation at the extremely low speed, the disturbance observer is introduced on the basis of the backstepping control to observe the disturbances and feed forward compensation in real time, so as to further improve the dynamics and anti-interference ability of the system. While adding a filter to avoid the increasing complexity in calculating the analytic derivatives of the virtual control in conventional backstepping method and the calculating inflation problem. The experimental results show that the disturbance observer-based filter backstepping control (DOB-FBC) with low speed crawling for AC servo system has better robustness and it can effectively weaken the low speed crawling adverse influence on the performance of the servomotor running at low speed while meeting the system performance index.
|
Received: 30 June 2018
Published: 05 March 2020
|
|
|
|
|
[1] 王楠, 杜宇波, 王振华, 等. 机电伺服系统低速问题研究进展[J]. 陕西理工学院学报: 自然科学版, 2016, 32(6): 1-6, 12. Wang Nan, Du Yubo, Wang Zhenhua, et al.Research progress on low speed of electromechanical servo system[J]. Journal of Shaanxi Institute of Technology: Natural Science Edition, 2016, 32(6): 1-6, 12. [2] 姚建勇, 焦宗夏. 改进型LuGre模型的负载模拟器摩擦补偿[J]. 北京航空航天大学报, 2010, 36(7): 812-815. Yao Jianyong, Jiao Zongxia.Friction compensation for hydraulic load simulator based on improved LuGre friction model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(7): 812-815. [3] 谭文斌, 李醒飞, 向红标, 等. 修正黏性摩擦的LuGre模型的摩擦补偿[J]. 天津大学学报, 2012, 45(9): 824-828. Tan Wenbin, Li Xingfei, Xiang Hongbiao, et al.Friction compensation based on LuGre model with modified viscous friction[J]. Journal of Tianjin University, 2012, 45(9): 824-828. [4] Li Shihua, Gu Hao.Fuzzy adaptive internal model control schemes for PMSM speed-regulation system[J]. IEEE Transactions on Industrial Informatics, 2012, 8(4): 767-779. [5] Li Shihua, Zong Kai, Liu Huixian.A composite speed controller based on a second-order model of permanent magnet synchronous motor system[J]. Transactions of the Institute of Measurement and Control, 2011,33(5): 522-541. [6] 林雪, 王中华, 徐谦. 机电伺服系统摩擦补偿的自适应滑模控制[J]. 济南大学学报: 自然科学版, 2013, 27(2): 132-135. Lin Xue, Wang Zhonghua, Xu Qian, et al.Adaptive sliding mode control of friction compensation in servo system[J]. Journal of University of Jinan: Science and Technology, 2013, 27(2): 132-135. [7] Chen Caixue, Xie Yunxiang, Lan Yonghong.Back- stepping control of speed senseless permanent magnet synchronous motor based on slide model observer[J]. International Journal of Automation and Computing, 2015, 12(2): 149-155. [8] 方一鸣, 李智, 吴洋羊, 等. 基于终端滑模负载观测器的永磁同步电机位置系统反步控制[J]. 电机与控制学报, 2014, 18(9): 105-111. Fang Yiming, Li Zhi, Wu Yangyang, et al.Back- stepping control of permanent magnet synchronous motor position system based on the load terminal sliding mode observer[J]. Electric Machines and Control, 2014, 18(9): 105-111. [9] 薛树功, 瞿成明, 魏利胜. 永磁同步电机自抗扰反步控制[J]. 计算机工程与应用, 2012, 48(3): 209-211. Xue Shugong, Qu Chengming, Wei Lisheng.Control of perturbation reaction of permanent magnet synchronous motor[J]. Computer Engineering and Application, 2012, 48(3): 209-211. [10] 阎彦, 刘锐, 史婷娜, 等. 基于反推自适应控制的永磁同步电机摩擦力矩补偿策略[D]. 天津: 天津大学, 2012. [11] Zaafouri A, Regaya C B, Azza H B, et al.DSP-based adaptive backstepping using the tracking errors for high-performance sensorless speed control of induction motor drive[J]. ISA Transactions, 2015, 60: 333-347. [12] 侯波, 穆安乐, 董锋斌, 等. 单相电压型全桥逆变器的反步滑模控制策略[J]. 电工技术学报, 2015, 30(20): 93-99. Hou Bo, Mu Anle, Dong Fengbin, et al.Control strategy of reverse sliding mode of single-phase voltage full bridge inverter[J]. Transactions of China Electrotechnical Society, 2015, 30(20): 93-99. [13] 张博, 齐蓉, 林辉. 激光切割永磁直线伺服系统的反演滑模控制[J]. 电工技术学报, 2018, 33(3): 642-651. Zhang Bo, Qi Rong, Lin Hui.Back-stepping sliding mode control of laser cutting permanent magnet linear servo control system[J]. Transactions of China Electrotechnical Society, 2008, 33(3): 642-651. [14] 陈晓菊, 张杭, 张爱民, 等. 链式静止同步补偿器反步控制器[J]. 电工技术学报, 2017, 32(24): 205-213. Chen Xiaoju, Zhang Hang, Zhang Aimin, et al.Adaptive backstepping controller of cascaded static synchronous compensator[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 205-213. [15] 赵希梅, 武文斌. 基于周期学习扰动观测器的永磁直线同步电机伺服系统控制[J]. 电工技术学报, 2018, 33(9): 1985-1993. Zhao Ximei, Wu Wenbin.Control of permanent magnet linear synchronous motor servo system based on periodic learning perturbation observer[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1985-1993. [16] 陈炜, 郭照升, 夏长亮, 等. 基于转动惯量辨识的交流伺服系统自适应扰动观测器设计[J]. 电工技术学报, 2016, 31(16): 34-42. Chen Wei, Guo Zhaosheng, Xia Changliang, et al.Design of adaptive disturbance observer for AC servo system based on moment of inertia identification[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 34-42. [17] 杨影, 李之珂, 王爽, 等. 基于轴转矩扰动观测器的伺服系统扭振抑制研究[J]. 电工技术学报, 2018, 33(15): 3556-3563. Yang Ying, Li Zhike, Wang Shuang, et al.Research on torsional vibration suppression of servo system based on shaft torque disturbance observer[J]. Transactions of China Electrotechnical Society, 2018, 33(15): 3556-3563. [18] 王晓玲. 基于神经网络的感应电动机命令滤波反步控制[D]. 青岛: 青岛大学, 2017. [19] 陈子印, 林喆, 康建兵, 等. 基于滤波反步法的三相永磁同步电机伺服控制[J]. 控制理论与应用, 2017, 34(4): 515-524. Chen Ziyin, Lin Zhe, Kang Jianbing, et al.Three- phase permanent magnet synchronous motor servo control based on filtering backstepping control[J]. Control Theory and Application, 2017, 34(4): 515-524. |
|
|
|