[1] 杨帆, 杨旗, 程鹏, 等. 电缆接头内部气隙放电缺陷下的绝缘劣化程度表征方法[J]. 电工技术学报, 2017, 32(2): 24-32. Yang Fan, Yang Qi, Cheng Peng, et al. Study of cracking extent for gap discharge in insulating material of power cable joint[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 24-32.
[2] 魏钢, 唐炬, 文习山, 等. 局部放电信号在交联聚乙烯高压电力电缆中的衰变及其检测[J]. 高电压技术, 2011, 37(6): 1377-1383. Wei Gang, Tang Ju, Wen Xishan, et al. Decay and detection of partial discharge signals in high-voltage cross-linked polyethylene power cable[J]. High Voltage Engineering, 2011, 37(6): 1377-1383.
[3] Gulski E, Cichecki P, Wester F, et al.On-site testing and PD diagnosis of high voltage power cables[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(6): 1691-1700.
[4] 李臻, 罗林根, 盛戈皞, 等. 基于压缩感知的特高频局部放电定位法[J]. 电工技术学报, 2018, 33(1) : 202-208. Li Zhen, Luo Lingen, Sheng Gehao, et al. Ultrahigh frequency partial discharge localization methodology based on compressed sensing[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 202-208.
[5] 魏振, 齐波, 左健, 等. 基于局部放电图像特征的换流变压器油纸绝缘缺陷诊断方法[J]. 电网技术, 2015, 39(4): 1160-1166. Wei Zhen, Qi Bo, Zuo Jian, et al. A method to diagnose defects in oil-paper insulation of converter transformer based on image feature of partial discharge[J]. Power System Technology, 2015, 39(4): 1160-1166.
[6] 杨丰源, 许永鹏, 郑新龙, 等. 基于压缩感知的高压直流电缆局部放电模式识别[J]. 高电压技术, 2017, 41(2): 446-452. Yang Fengyuan, Xu Yongpeng, Zheng Xinlong, et al. Partial discharge pattern recognition of HVDC cable based on compressive sensing[J]. High Voltage Engineering, 2017, 41(2): 446-452.
[7] Li Jian, Sun Caixin, Grzybowski S.Partial discharge image recognition influenced by fractal image compression[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(2): 496-504.
[8] Hoof M, Freisleben B, Patsch R.PD source identification with novel discharge parameters using counter propagation neural networks[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1997, 4(1): 17-32.
[9] 张晓星, 唐炬, 孙才新, 等. 基于核统计不相关最优鉴别矢量集的GIS局部放电模式识别[J]. 电工技术学报, 2008, 23(9): 111-117. Zhang Xiaoxing, Tang Ju, Sun Caixin, et al. PD pattern recognition based on kernel statistical uncorrelated optimum discriminant vectors in GIS[J]. Transactions of China Electrotechnical Society, 2008, 23(9): 111-117.
[10] Gilles J.Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010.
[11] Arber W, Henle W, Hofschneider P H.Current topics in microbiology and immunology[J]. The Quarterly Review of Biology, 1975, 50(3): 77-78.
[12] Gilles J, Tran G, Osher S.2D empirical transforms, wavelets, ridgelets, and curvelets revisited[J]. SIAM Journal on Imaging Sciences, 2014, 7(1): 157-186.
[13] Averbuch A, Coifman R R, Donoho D L, et al.Fast and accurate polar Fourier transform[J]. Applied & Computational Harmonic Analysis, 2006, 21(2): 145-167.
[14] Averbuch A, Coifman R R.A framework for discrete integral transformations I-the Pseudopolar Fourier transform[J]. Siam Journal on Scientific Computing, 2014, 30(2): 764-784.
[15] 黄南天, 张书鑫, 蔡国伟, 等. 采用EWT和OCSVM的高压断路器机械故障诊断[J]. 仪器仪表学报, 2015, 36(12): 2773-2781. Huang Nantian, Zhang Shuxin, Cai Guowei, et al. Mechanical fault diagnosis of high voltage circuit breakers utilizing empirical wavelet transform and one-class support vector machine[J]. Chinese Journal of Scientific Instrument, 2015, 36(12): 2773-2781.
[16] Rao A R.A taxonomy for texture description and identification[M]. New York: Springer Science & Business Media, 2012.
[17] 赵爱罡, 王宏力, 杨小冈, 等. 纹理粗糙度在红外图像显著性检测中的应用[J]. 光学精密工程, 2016, 24(1): 220-228. Zhao Aigang, Wang Hongli, Yang Xiaogang, et al. Application of texture coarseness in saliency detection of infrared image[J]. Optics and Precision Engineering, 2016, 24(1): 220-228.
[18] 齐波, 魏振, 李成榕, 等. 交直流复合电场中油纸绝缘沿面放电现象及特征[J].电工技术学报, 2016, 31(10): 259-267. Qi Bo, Wei Zhen, Li Chengrong, et al. The phenomena and characteristics of oil-paper insulation surface discharge under AC and DC voltage[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 259-267.
[19] Tamura H, Mori S, Yamawaki T.Textural features corresponding to visual perception[J]. IEEE Transactions on Systems Man & Cybernetics, 1978, 8(6): 460-473.
[20] Shannon C.A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(1-2): 623-656.
[21] Pincus S M.Approximate entropy as a measure of system complexity[J]. Proceeding of the National Academy Sciences USA, 1991, 88(6): 2297-2301.
[22] 胡红英, 马孝江. 局域波近似熵及其在机械故障诊断中的应用[J]. 振动与冲击, 2006, 25(4): 38-40. Hu Hongying, Ma Xiaojiang. Application of local wave approximate entropy in mechanical fault diagnosis[J]. Journal of Vibration and Shock, 2006, 25(4): 38-40.
[23] Richman J S, Moorman J R.Physiological time-series analysis using approximate entropy and sample entropy[J]. American Journal of Physiology, Heart And Circulatory Physiology, 2000, 278(6): H2039.
[24] 姚林朋, 徐颖敏, 钱勇, 等. 基于关联规则的XLPE电缆局部放电模糊识别研究[J]. 电工技术学报, 2012, 27(5): 92-98. Yao Linpeng, Xu Yingmin, Qian Yong, et al. Fuzzy pattern recognition of partial discharge in XLPE cable based on association rule[J]. Transactions of China Electrotechnical Society, 2012, 27(5): 92-98.
[25] 叶海峰, 钱勇, 刘宗杰, 等. 一种新型的放电源空间定位用特高频传感器[J]. 电工技术学报, 2015, 30(8): 333-340. Ye Haifeng, Qian Yong, Liu Zongjie, et al. A new UHF sensor for spatial location of partial discharge sources[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 333-340.
[26] 杨丽君, 孙才新, 廖瑞金, 等. 油纸绝缘老化状态判别的局部放电特征量[J]. 电力系统自动化, 2007, 31(10): 55-60. Yang Lijun, Sun Caixin, Liao Ruijin, et al. Partial discharge features applied in aging condition discrimination of oil paper insulation[J]. Automation of Electric Power Systems, 2007, 31(10): 55-60.
[27] Zhang Xiaoxing, Xiao Song, Shu Na, et al.GIS partial discharge pattern recognition based on the chaos theory[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2014, 21(2): 783-790. |