|
|
Research on Arc Inversion Based on Fractional Tikhonov Regularization Method |
Zhao Hongchen1, Liu Xiaoming1,2, Yang Yingxuan3, Chen Hai2, Yang Luyu3 |
1.School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2.Tianjin Key Laboratory of Advanced Electrical Engineering and Energy Technology Tianjin Polytechnic University Tianjin 300387 China; 3.State Grid Liaoning Electric Power Research Institute Shenyang 110006 China |
|
|
Abstract The switching apparatus with contact will inevitably produce arc when breaking the circuit. In this paper, a three-dimensional arc model of a straight contact system is constructed, that the arc is assumed to be a cluster of broken lines. Based on the Biot-Savart law, the magnetic distribution is measured in-plane around the arc through the forward analysis, thus the arc current density distribution is inversed according to the magnetic field. In order to improve the accuracy of current reconstruction, the Tikhonov regularization method is used to solve the ill-posed equations based on the electromagnetic inverse problem. Considering the approximate solution of the standard Tikhonov regularization method is too smooth because of the loss of the details of the reconstructed data due to the function of the filter operator, the fractional Tikhonov regularization method is adopted to improve the accuracy of the solution, and the Morozov discrepancy criterion is used to obtain the regularization parameter. The inversion result shows that by reducing the order of α can slow down the convergence speed of the filtering operator, which will increase the norm of the solution vector to approximate to the exact solution. Under the magnetic interference with a standard deviation of 0.001, the maximum relative error of arc inversion is 21.26% and the mean relative error is 8.99% compared with the preset values, which shows more accuracy than the standard Tikhonov method and truncated singular value decomposition, thus the inversion results can indicate the trend of arc distribution.
|
Received: 01 January 2018
Published: 10 January 2019
|
|
|
|
|
[1] Xu Tiejun, Rong Mingzhe, Wu Yi, et al.The study on the anode current density distribution in a moving arc root[C]//Asia-Pacific Power & Energy Engineering Conference, IEEE Power & Energy Society, Wuhan, China, 2009: 1-4. [2] 崔兴磊, 周学, 张勇, 等. 基于彩色摄像和光谱分析联合测温方法的电弧温度场分布测量[J]. 电工技术学报, 2017, 32(15): 128-135. Cui Xinglei, Zhou Xue, Zhang Yong, et al. Measurement of static arc temperature distribution based on colorful photographing spectroscopy analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 128-135. [3] 胡怡, 魏文赋, 雷栋, 等. 弓网电弧等离子体光谱特性实验[J]. 电工技术学报, 2016, 31(24): 62-70. Hu Yi, Wei Wenfu, Lei Dong, et al. Experimental investigation on spectral characteristics of photograph-catenary arc plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 62-70. [4] Toumazet J P, Velleaud G, Brdys C, et al.A study of the influence of the walls’ nature on the behavior of a low-voltage arc breaker by means of an inverse method[J]. Journal of Physics D: Applied Physics, 1999(32): 121-127. [5] Brdys C, Toumazet J P, Laurent A, et al.Optical and magnetic diagnostics of the electric arc dynamics in a low-voltage circuit breaker[J]. Measurement Science and Technology, 2002(13): 1146-1153. [6] Toumazet J P, Brdys C, Laurent A, et al.Combined use of an inverse method and a voltage measurement: estimation of the arc column volume and its variation[J]. Measurement Science and Technology, 2005(16): 1525-1533. [7] Luca G, Luca D R, Daniele P, et al.Current identification in vacuum circuit breakers by inverting magnetic field data[C]//International Conference on Electric Power Equipment-Switching Technology, Xi’an, China, 2011: 65-68. [8] Luca G, Daniele P, Luca D R.Current density reconstruction in vacuum arcs by inverting magnetic field data[J]. IEEE Transactions on Magnetics, 2012, 48(8): 2324-2333. [9] 张鹏飞, 张国钢, 杨博宇, 等. 基于电磁逆问题求解的开关电弧形态重构方法研究[J]. 中国电机工程学报, 2013, 33(12): 159-166. Zhang Pengfei, Zhang Guogang, Yang Boyu, et al. Research on spatial morphology reconstruction of switching electric arc based on solution to the inverse electromagnetic problem[J]. Proceedings of the CSEE, 2013, 33(12): 159-166. [10] Zhang Pengfei, Zhang Guogang, Dong Jinlong, et al.Non-intrusive magneto-optic detecting system for investigations of air switching arcs[J]. Plasma Science and Technology, 2014, 16(7): 661-668. [11] 杨帆, 代峰, 姚德贵, 等. 基于最小二乘QR分解算法的接地网磁场重构方法及应用[J]. 电工技术学报, 2016, 31(5): 184-191. Yang Fan, Dai Feng, Yao Degui, et al. Least square QR factor-ization arithmetic based magnetic field reconstruction for grounding grid and its application[J]. Transactions of China Electrotechnical Society, 2016, 31(5): 184-191. [12] 刘渝根, 许晓艳, 杨蕊菁, 等. 基于Tikhonov正则化原理的接地网腐蚀诊断方法[J]. 高电压技术, 2017, 43(8): 2709-2717. Liu Yugen, Xu Xiaoyan, Yang Ruijing, et al. Corrosion diagnosis method for grounding grid based on Tikhonov regularization principle[J]. High Voltage Engineering, 2017, 43(8): 2709-2717. [13] 李翠环, 汪友华, 耿读艳, 等. 基于双参数模型的ECT图像重构混合算法[J]. 电工技术学报, 2012, 27(4): 24-29. Li Cuihuan, Wang Youhua, Geng Duyan, et al. Hybrid algorithm based on two-parameter model for electrical capacitance tomography image reconstruction[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 24-29. [14] 高鹤明, 许传龙, 付飞飞, 等. 迭代正则化修正的电荷层析成像算法[J]. 中国电机工程学报, 2010, 30(35): 61-64. Gao Heming, Xu Chuanlong, Fu Feifei, et al. Modified iterative regularization algorithm for electrostatic tomography[J]. Proceedings of the CSEE, 2010, 30(35): 61-64. [15] Morigi S, Reichel L, Sgallari F.Fractional Tikhonov regularization with a nonlinear penalty term[J]. Journal of Computational and Applied Mathematics, 2017(324): 142-154. [16] Klann E, Ramlau R.Regularization by fractional filter methods and data smoothing[J]. Inverse Problems, 2008, 24(2): 1-27. [17] Hochstenbach M E, Reichel L.Fractional Tikhonov regularization for linear discrete ill-posed problems[J]. Bit Numerical Mathematics, 2011, 51(1): 197-215. [18] Gerth D, Klann E, Ramlau R, et al.On fractional Tikhonov regularization[J]. Journal of Inverse and Ⅲ-Posed Problems, 2015, 23(6): 611-625. [19] 吴翊, 荣命哲, 王小华, 等. 触头打开过程中低压空气电弧等离子体的动态分析[J]. 电工技术学报, 2008, 23(5): 12-17. Wu Yi, Rong Mingzhe, Wang Xiaohua, et al. Dynamic analysis of low-voltage air arc plasma during contact opening process[J]. Transactions of China Electrotechnical Society, 2008, 23(5): 12-17. [20] Hansen P C.Analysis of discrete ill-posed problems by means of the L-curve[J]. Siam Review, 1992, 34(4): 561-580. [21] 刘继军. 不适定问题的正则化方法及应用[M]. 第1版. 北京: 科学出版社, 2005. [22] 黄操, 袁海文, 马钊, 等. 基于Tikhonov正则化方法的同步电机参数辨识[J]. 电力自动化设备, 2016, 36(5): 107-111. Huang Cao, Yuan Haiwen, Ma Zhao, et al. Synchronous generator parameter identification based on Tikhonov regularization method[J]. Electric Power Automation Equipment, 2016, 36(5): 107-111. [23] 谢正超, 王飞, 严建华, 等. 炉膛三维温度场重建中Tikhonov正则化和截断奇异值分解算法比较[J]. 物理学报, 2015, 64(24): 1-8. Xie Zhengchao, Wang Fei, Yan Jianhua, et al. Comparative studies of Tikhonov regularization and truncated singular value decomposition in the three- dimensional flame temperature field reconstruction[J]. Acta Physica Sinica, 2015, 64(24): 1-8. |
|
|
|