|
|
A Linear Induction Maglev Motor with HTS Traveling Magnetic Electromagnetic Halbach Array |
Qin Wei1, Fan Yu1, Xu Hongze2, Lü Gang1, Fang Jin1 |
1. School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China; 2. School of Electronic and Information Engineering Beijing Jiaotong University Beijing 100044 China |
|
|
Abstract A linear induction maglev motor (LIMM) with high temperature superconductor (HTS) traveling magnetic electromagnetic Halbach array (TMEHA) is proposed. The motor creates traveling magnetic field by 3-phase alternating current in primary electromagnetic Halbach array above a conductive guideway, the eddy current are induced in the guideway that can simultaneously create suspension and propulsion forces. The relations of HTS TMEHA parameter and performance of LIMM are calculated using an analytical method based on magnetic vector potential equation and boundary conditions. Then, the expression of the motor’s flux density distribution is derived. Finally, a small prototype with copper primary windings is manufactured to validate the analytical results.
|
Received: 10 July 2018
Published: 17 December 2018
|
|
|
|
|
[1] Yan Luguang.Development and application of the magnet technology in China[C]//Proceedings of Fifteenth International Conference on Magnet Technology, Beijing, China, 1997: 30-35. [2] Lequesne B, Liu Buyun, Nehl T W.Eddy current machines with permanent magnets and solid rotors[J]. IEEE Transactions on Industry Applications, 1997, 33(5): 1289-1294. [3] 陈殷, 张昆仑. 板式双边永磁电动悬浮电磁力计算[J]. 电工技术学报, 2016, 31(24): 150-156. Chen Yin, Zhang Kunlun.Calculation of electromagnetic force of plate type null double side permanent magnet electrodynamic suspension[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 150-156. [4] Fujii N, Chida M, Ogawa K.Three dimensional force of magnet wheel with revolving permanent magnets[J]. IEEE Transactions on Magnets, 1997, 30(5): 4221-4223. [5] Bird J.Thesis an investigation into the use of electrodynamic wheels for high speed ground transportation[D]. Wisconsin: University of Wisconsin, 2007. [6] Bird J, Lipo T A.A 3-D magnetic charge finite-element model of an electrodynamic wheel[J]. IEEE Transactions on Magnetics, 2008, 44(2): 253-265. [7] Bird J, Lipo T A.Calculating the force created by an electrodynamic wheel using a 2-D steady-state finite-element method[J]. IEEE Transactions on Magnetics, 2008, 44(3): 365-372. [8] 雷银照. 关于电磁场解析方法的一些认识[J]. 电工技术学报, 2016, 31(19): 11-25. Lei Yinzhao.Reviews of analytical methods for electromagnetic fields[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 11-25. [9] 赵佳, 张威, 方进, 等. 结构参数对高温超导直线感应电机电磁性能的影响[J]. 中国电工技术学报, 2011, 31(3): 97-103. Zhao Jia, Zhang Wei, Fang Jin, et al.Influence of structural parameters on electromagnetic properties of high temperature superconductor linear induction motor[J]. Proceedings of the CSEE, 2011, 31(3): 97-103. [10] 张赫, 寇宝泉, 金银锡, 等. 圆筒型Halbach次级结构磁悬浮重力补偿器[J]. 电工技术学报, 2016, 31(6): 30-37. Zhang He, Kou Baoquan, Jin Yinxi, et al.A cylindrical magnetic levitation gravity compensator with Halbach secondary structure[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 30-37. [11] 罗玲, 薛利昆, 吴先宇, 等. Halbach永磁阵列无刷直流电机转矩的解析计算和分析[J]. 电工技术学报, 2017, 32(16): 124-134. Luo Ling, Xue Likun, Wu Xianyu, et al.Analytical calculation and analysis of torque for brushless DC motors with Halbach magnet array[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 124-134. [12] 罗辞勇, 李竹田, 沈启平. 异形永磁体圆柱型直线电机的优化设计[J]. 电工技术学报, 2017, 32(17): 127-134. Luo Ciyong, Li Zhutian, Shen Qiping.Optimal design of a cylindrical linear motor with trapezoidal permanent magnet[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 127-134. [13] 秦伟. 无铁芯高温超导感应悬浮电机的电磁机理研究[D]. 北京: 北京交通大学, 2013. [14] Yoon S B, Hur J, Hyun D S.A method of optimal design of single-sided linear induction motor for transit[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4215-4217. [15] Mirsalim M, Doroudi A, Moghani J S.Obtaining the operating characteristics of linear induction motors: a new approach[J]. IEEE Transactions on Magnetics, 2002, 38(2): 1365-1370. |
|
|
|