[1] 马伟明, 肖飞, 聂世雄. 电磁发射系统中电力电子技术的应用与发展[J]. 电工技术学报, 2016, 31(19): 1-10. Ma Weiming, Xiao Fei, Nie Shixiong.Applications and development of power electronics in elec- tromagnetic launch system[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 1-10. [2] Gu Jie, Lau D, Pecht M.Health assessment and prognostics of electronic products[C]//International Conference on Reliability, Chengdu, China, 2009: 912-919. [3] Edward R B, Mccollom N N, Erin-Elaine M, et al.Prognostics and health management a data-driven approach to supporting the F-35 lightning II[C]// Aerospace Conference, Big Sky, MT, USA, 2007: 1-12. [4] Lebold M, Reichard K, Byington C S, et al.OSA-CBM architecture development with emphasis on XML implementations[C]//Proceedings of the Maintenance and Reliability Conference (MARCON 2002), Knoxville, TN, 2002: 1-16. [5] 彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3): 481-495. Peng Yu, Liu Datong.Data-driven prognostics and health management: a review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3): 481-495. [6] 崔小鹏, 王公宝, 马伟明, 等. 直线电机分段供电故障诊断研究[J]. 电机与控制学报, 2013, 17(8): 63-70. Cui Xiaopeng, Wang Gongbao, Ma Weiming, et al.Research on fault diagnosis of segment-powered linear induction motor[J]. Electric Machines and Control, 2013, 17(8): 63-70. [7] 田波, 朴在林, 郭丹, 等. 基于改进EEMD_SE_ ARMA的超短期风功率组合预测模型[J]. 电力系统保护与控制, 2017, 45(4): 72-79. Tian Bo, Piao Zailin, Guo Dan, et al.Wind power ultra short-term model based on improved EEMD- SE-ARMA[J]. Power System Protection and Control, 2017, 45(4): 72-79. [8] Erdem E, Shi Jing.ARMA based approaches for forecasting the tuple of wind speed and direction[J]. Applied Energy, 2011, 88(4): 1405-1414. [9] 龚莺飞, 鲁宗相, 乔颖, 等. 光伏功率预测技术[J]. 电力系统自动化, 2016, 40(4): 140-151. Gong Yingfei, Lu Zongxiang, Qiao Ying, et al.An overview of photovoltaic energy system output forecasting technology[J]. Automation of Electric Power Systems, 2016, 40(4): 140-151. [10] 王丽婕, 冬雷, 高爽. 基于多位置NWP与主成分分析的风电功率短期预测[J]. 电工技术学报, 2015, 30(5): 79-84. Wang Lijie, Dong Lei, Gao Shuang.Wind power short-term prediction based on principal component analysis of NWP of multiple locations[J]. Transa- ctions of China Electrotechnical Society, 2015, 30(5): 79-84. [11] Louka P, Galanis G, Siebert N, et al.Improvements in wind speed forecasts for wind power prediction purposes using kalman filtering[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2008, 96(12): 2348-2362. [12] 修春波, 任晓, 李艳晴, 等. 基于卡尔曼滤波的风速序列短期预测方法[J]. 电工技术学报, 2014, 29(2): 253-259. Xiu Chunbo, Ren Xiao, Li Yanqing, et al.Short-term prediction method of wind speed series based on Kalman filtering fusion[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 253-259. [13] 任亮, 赵兴勇. 基于相似性算法的超短期风速预测[J]. 电力学报, 2016, 31(1): 36-40,46. Ren Liang, Zhao Xingyong.Ultra-short term wind speed prediction based on similarity algorithm[J]. Journal of Electric Power, 2016, 31(1): 36-40, 46. [14] 李龙, 魏靖, 黎灿兵, 等. 基于人工神经网络的负荷模型预测[J]. 电工技术学报, 2015, 30(8): 226-230. Li Long, Wei Jing, Li Canbing, et al.Prediction of load model based on artificial neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 226-230. [15] 王新普, 周想凌, 邢杰, 等. 一种基于改进灰色BP神经网络组合的光伏出力预测方法[J]. 电力系统保护与控制, 2016, 44(18): 81-87. Wang Xinpu, Zhou Xiangling, Xing Jie, et al.A prediction method of PV output power based on the combination of improved grey back propagation neural network[J]. Power System Protection and Control, 2016, 44(18): 81-87. [16] 张颖超, 王雅晨, 邓华, 等. 基于IAFSA_BPNN的短期风电功率预测[J]. 电力系统保护与控制, 2017, 45(7): 58-63. Zhang Yingchao, Wang Yachen, Deng Hua, et al.IAFSA-BPNN for wind power probabilistic foreca- sting[J]. Power System Protection and Control, 2017, 45(7): 58-63. [17] 陈亚, 李萍. 基于神经网络的短期电力负荷预测仿真研究[J]. 电气技术, 2017, 18(1): 26-29. Chen Ya, Li Ping.Research on simulation of short- term power load forecasting based on neural net- work[J]. Electrical Engineering, 2017, 18(1): 26-29. [18] 田中大, 李树江, 王艳红, 等. 基于小波变换的风电场短期风速组合预测[J]. 电工技术学报, 2015, 30(9): 112-120. Tian Zhongda, Li Shujiang, Wang Yanhong, et al.Short-term wind speed combined prediction for wind farms based on wavelet transform[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 112-120. [19] Hui Liu, Tian Hongqi, Li Yanfei.Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction[J]. Applied Energy, 2012, 98(1): 415-424. [20] 潘迪夫, 刘辉, 李燕飞. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J]. 电网技术, 2008, 32(7): 82-86. Pan Difu, Liu Hui, Li Yanfei.A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman filter algorithm[J]. Power System Technology, 2008, 32(7): 82-86. [21] 刘辉. 铁路沿线风信号智能预测算法研究[D]. 长沙: 中南大学, 2011. [22] 潘迪夫, 刘辉, 李燕飞. 风电场风速短期多步预测改进算法[J]. 中国电机工程学报, 2008, 28(26): 87-91. Pan Difu, Liu Hui, Li Yanfei.Optimization algorithm of short-term multi-step wind speed forecast[J]. Proceedings of the CSEE, 2008, 28(26): 87-91. [23] Gong Li, Shi Jing.On comparing three artificial neural networks for wind speed forecasting[J]. Applied Energy, 2010, 87(7): 2313-2320. [24] Welch G, Bishop G.An introduction to the Kalman filter[M]. Chapel Hill: University of North Carolina at Chapel Hill, 1995. |