|
|
Improving the Voltage Distribution of the Insulator String of Flexible HVDC Converter Valve |
Li Jingyi, Shen Hong, Liu Kexin, Qi Lei, Cui Xiang |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract With the upgrade of the voltage level, flexible DC converter valves often adopt multi-layer support structure design of the insulators in series, so as to ensure enough insulation interval to the ground. However, in model tests, there was a problem of uneven voltage distribution across the insulator of the commutation valve, making it difficult to select the type of insulator. This will increase the design cost and difficulty of the converter valve. Aiming at ±800 kV DC converter valve tower, this article analysis the uneven voltage distribution in series supporting insulators under the AC-DC insulation type test, established a circuit calculation model and extracted the capacitance and resistance parameters in the model. By comparing with the calculation results of the quasi-static electric field, the correctness of the circuit calculation model is verified. Based on the above, this article put forward a method to make voltage distribution evenly by setting the potential clamp point between the water pipe and the series insulator. In addition, the influence of water pipe length, the number of water pipes connected by equipotential bonding, the number and height of insulator strings and the position of equipotential bonding on the voltage distribution of series supporting insulators were calculated and analyzed. Then combining with engineering design requirements to confirm the voltage distribution scheme on series supporting insulators. The two methods can not only meet the design demand, but also significant save costs and time in designing.
|
Received: 23 November 2017
Published: 12 November 2018
|
|
|
|
|
[1] Li Jing, Peng Zongren, Feng Yong, et al.Electric field calculation and grading ring optimization of composite insulator for 500 kV AC transmission lines[C]//2010 International Conference on Solid Dielectrics, Potsdam, Germany, 2010: 1-4. [2] 韩民晓, 文俊, 徐永海. 高压直流输电原理与运行[M]. 第2版. 北京: 机械工程出版社, 2012. [3] Mei Hongwei, Peng Gongmao, Dai Hanqi, et al.Installing insulation jacket to improve outdoor insulation performance of composite insulator[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2011, 18(6): 2004-2012. [4] 魏梦婷, 黄道春, 霍锋, 等. 特高压交流线路Y型复合绝缘子串静电场分布[J]. 电工技术学报, 2017, 32(21): 113-120. Wei Mengting, Huang Daochun, Huo Feng, et al.Static electric field distribution of ultra-high voltage AC line Y-type composite insulator string[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 113-120. [5] 王星星, 罗潇, 齐磊, 等. 高压直流换流阀用绝缘子表面电场计算及均压环设计[J]. 电网技术, 2014, 38(2): 289-296. Wang Xingxing, Luo Xiao, Qi Lei, et al.Calculation of electric field distribution along composite insulator and design of grading ring of HVDC converter valve[J]. Power System Technology, 2014, 38(2): 289-296. [6] IEC 60700-1 thyristor valves for high voltage direct current (HVDC) power transmission: part 1 electrical testing[S]. Geneva, Switzerland: International Electrotechnica Commission, 1998. [7] 刘士利, 王洋, 张力丹, 等. ±800kV特高压直流受端分层接入方式下低端阀厅金具结构设计[J]. 电工技术学报, 2017, 32(14): 238-245. Liu Shili, Wang Yang, Zhang Lidan, et al.Structure design of ±800kV UHVDC receiving end low voltage valve hall fittings for hierarchical connection[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 238-245. [8] 卞星明, 张福增, 王黎明, 等. 1000 kV交流复合绝缘子均压环参数设计[J]. 高电压技术, 2009, 35(5): 980-986. Bian Xingming, Zhang Fuzeng, Wang Liming, et al.Design of grading rings for 1000 kV AC composite insulator[J]. High Voltage Engineering, 2009, 35(5): 980-986. [9] 邓桃, 李庆峰, 张学军, 等. ±800kV特高压直流线路均压环优化研究[J]. 中国电机工程学报, 2009, 22(29): 100-105. Deng Tao, Li Qingfeng, Zhang Xuejun, et al.The optimization of grading ring design for ±800kV UHVDC transmission lines[J]. Proceedings of the CSEE, 2009, 22(29): 100-105. [10] 汪沨, 廖平军, 黄俊, 等. 含污秽薄层的高压复合绝缘子表面电场计算新方法[J]. 电工技术学报, 2016, 31(10): 77-84. Wang Feng, Liao Pingjun, Huang Jun, et al.Novel method for electric field calculation considering the thickness of contaminant layer on the surface of composite insulator[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 77-84. [11] Sima Wenxia.Corona ring design of ±800kV DC composite insulator based on computer analysis[C]// IEEE Electrical Insulation and Dielectric Phenomena, MO, USA, 2006: 457-460. [12] Sima Wenxia.Optimization of corona ring design for long-rod insulators using FEM based computational analysis[C]//Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, IN, USA, 2004: 480-483. [13] 曾建兴. 柔性直流输电换流阀冷却系统研究[J]. 自动化应用, 2014(12): 89-91. Zeng Jianxing.Study on cooling system of converter valve of HVDC flexible[J]. Automation Application, 2014(12): 89-91. [14] 廖敏, 蓝元良, 杨晓楠, 等. ±660 kV直流输电工程换流阀控制系统的工作原理及工程应用[J]. 电力建设, 2011, 32(7): 21-24. Liao Min, Lan Yuanliang, Yang Xiaonan, et al.Structure design of converter valve for ±660 kV HVDC transmission project[J]. Electric Power Construction, 2011, 32(7): 21-24. [15] 王栋, 阮江军, 杜志叶, 等. 直流换流站阀厅内部场域电位和电场强度子模型法数值求解[J]. 电网技术, 2011, 35(9): 158-163. Wang Dong, Ruan Jiangjun, Lin Zhiye, et al.Field potential and electric field intensity of the sub model method numerical solution within the DC converter station valve hall[J]. Power System Technology, 2011, 35(9): 158-163. [16] 刘士利, 王泽忠, 孙静. 基于线-面模型的边界元法计算特高压交流变电站设备附近工频电场[J]. 电工技术学报, 2011, 26(3): 162-167. Liu Shili, Wang Zezhong, Sun Jing.Calculation of power frequency electric field near equipments in UHV substations with BEM based on line-area models[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 162-167. [17] 齐磊, 李超, 王星星, 等. 柔性高压直流输电系统换流阀塔交流电场仿真计算[J]. 高电压技术, 2014, 40(11): 3537-3543. Qi Lei, Li Chao, Wang Xingxing, et al.Simulation calculation of AC electric field for valve tower of flexible HVDC[J]. High Voltage Engineering, 2014, 40(11): 3537-3543. [18] 王泽忠. 简明电磁场数值计算: 电磁场数值计算[M]. 北京: 机械工业出版社, 2011. [19] Jin Jianming.The finite element method in electromagnetics[J]. Journal of the Japan Society of Applied Electromagnetics, 2014, 1: 39-40. |
|
|
|