|
|
Influence of Pulse Parameters on Discharge Characteristics of One-Dimensional Plasma Jet Array in He at Atmospheric Pressure |
Zhang Bo1, Zhou Ruoyu1, Wang Lifeng1, Chen Zhaoquan2, Fang Zhi1 |
1. College of Electrical Engineering and Control Science Nanjing Tech University Nanjing 210009 China; 2. Institute of Electrical and Information Engineering Anhui University of Technology Maanshan 243032 China |
|
|
Abstract Grouping up many individual plasma jets to construct jet arrays is an effective way to enlarge the downstream treatment area of a single plasma jet, while the stability and uniformity of jet array are essential for its industrial application. In this paper, in order to obtain a stable and uniform jet array, a 1D atmospheric pressure plasma jet array in He is generated driven by a nanosecond pulse source, and its discharge characteristics are investigated with optical and electrical diagnoses including images and voltage-current waveforms. The influence of pulse parameters such as voltage amplitude, rising time and pulse frequency on discharge characteristics is studied, and the optimal pulse parameters for generating a uniform jet array are obtained, with the results being analyzed. Results show that a uniform 1D He plasma jet array can be generated under proper pulse parameters with the ring-ring electrode structure. Increasing the voltage amplitude has little effect on discharge uniformity, but can increase the discharge energy, transported charge and plume length, thus improve the discharge strength of jet array. The rising time has slight effect on discharge energy, transported charge and uniformity, and the pulse frequency significantly influences the uniformity, while has little effect on discharge energy and transported charge. The non-uniformity of jet array is due to the non-uniform distribution of electrical field and different content of residual active particles in each channel. Decreasing pulse frequency can reduce the influences of residual active particles on the discharge and is thus beneficial for obtaining a uniform jet array.
|
Received: 29 November 2017
Published: 12 November 2018
|
|
|
|
|
[1] Lu Xinpei, Laroussi M, Puech V.On atmospheric-pressure non-equilibrium plasma jets and plasma bullets[J]. Plasma Sources Science and Technology, 2012, 21(3): 034005. [2] 吴淑群, 董熙, 裴学凯, 等. 基于激光诱导荧光法诊断大气压低温等离子体射流中OH自由基和O原子的时空分布[J]. 电工技术学报, 2017, 32(8): 82-94. Wu Shuqun, Dong Xi, Pei Xuekai, et al.Laser induced fluorescence diagnostics of the temporal and spatial distribution of OH radicals and O atom in a low temperature plasma jet at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 82-94. [3] 丁正方, 方志, 许靖. 四氟化碳含量对大气压Ar等离子体射流放电特性的影响[J]. 电工技术学报, 2016, 31(7): 159-165. Ding Zhengfang, Fang Zhi, Xu Jing.Influences of CF4 content on discharge characteristics of argon plasma jet under atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 159-165. [4] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH4直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 61-69. [5] Wang Ruixue, Zhang Cheng, Liu Xiong, et al.Microsecond pulse driven Ar/CF4 plasma jet for polymethylmethacrylate surface modification at atmospheric pressure[J]. Applied Surface Science, 2015, 328: 509-515. [6] 阮陈, 张波, 朱颖, 等. He二维射流阵列放电模式转换条件实验[J]. 电工技术学报, 2017, 32(20): 82-89. Ruan Chen, Zhang Bo, Zhu Ying, et al.Experimental investigation on transstion conditions of dscharge modes in atmospheric pressure two-dimensional jet array in He[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 82-89. [7] Cao Z, Walsh J L, Kong M G.Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment[J]. Applied Physics Letters, 2009, 94(2): 021501. [8] Sun P P, Chen H L, Park S J, et al.Off-axis chemical crosstalk in an atmospheric pressure microplasma jet array[J]. Journal of Physics D: Applied Physics, 2015, 48(42): 425203. [9] Ghasemi M, Olszewski P, Bradley J W, et al.Interaction of multiple plasma plumes in an atmospheric pressure plasma jet array[J]. Journal of Physics D: Applied Physics, 2013, 46(5): 052001. [10] 方志, 张波, 阮陈. 大气压He中2维射流阵列放电特性的影响因素[J]. 高电压技术, 2016, 42(4): 1151-1158. Fang Zhi, Zhang Bo, Ruan Chen.Factor influencing on discharge characteristics of two-dimensional jet array in He at atmosphere pressure[J]. High Voltage Engineering, 2016, 42(4): 1151-1158. [11] Fan Qianqian, Qian Muyang, Ren Chunsheng, et al.Discharge characteristics of a cold-atmospheric-plasma jet array generated with single-electrode configuration[J]. IEEE Transactions on Plasma Science, 2012, 40(6): 1724-1729. [12] Cao Z, Walsh J L, Kong M G.Atmospheric plasma jet array in parallel electric and gas flow fields for three-dimensional surface treatment[J]. Applied Physics Letters, 2009, 94(2): R55. [13] Zhang Cheng, Shao Tao, Zhou Yixiao, et al.Effect of O2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses[J]. Applied Physics Letters, 2014, 105(4): 044102. [14] Robert E, Darny T, Dozias S, et al.New insights on the propagation of pulsed atmospheric plasma streams: from single jet to multi jet arrays[J]. Physics of Plasmas, 2015, 22(12): 122007. [15] Kim S J, Chung T H, Bae S H.Striation and plasma bullet propagation in an atmospheric pressure plasma jet[J]. Physics of Plasmas, 2010, 17(5): 053504. [16] Zhang Cheng, Shao Tao, Wang Ruixue, et al.A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium[J]. Physics of Plasmas, 2014, 21(10): 103505. [17] Xiong Qing, Lu Xinpei, Xian Yubin, et al.Experimental investigations on the propagation of the plasma jet in the open air[J]. Journal of Applied Physics, 2010, 107(7): 073302. [18] Wang Ruixue, Sun Hao, Zhu Weidong, et al.Uniformity optimization and dynamic studies of plasma jet array interaction in argon[J]. Physics of Plasmas, 2017, 24(9): 093507. [19] Lu Xinpei, Laroussi M.Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses[J]. Journal of Applied Physics, 2006, 100(6): 063302. [20] Fang Zhi, Ruan Chen, Shao Tao, et al. Two discharge modes in an atmospheric pressure plasma jet array in argon[J]. Plasma Sources Science and Technology, 2016, 25(1): 01LT01. [21] 姜慧, 邵涛, 章程, 等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报, 2017, 32(2): 33-42. Jiang Hui, Shao Tao, Zhang Cheng, et al.Distribution characteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 33-42. [22] Qian Muyang, Li Gui, Liu Sanqiu, et al.Effect of pulse voltage rising time on discharge characteristics of a helium-air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 064015. [23] Kim D B, Jung H, Gweon B, et al.The driving frequency effects on the atmospheric pressure corona jet plasmas from low frequency to radio frequency[J]. Physics of Plasmas, 2011, 18(4): 043503. [24] Babaeva N Y, Kushner M J.Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air[J]. Plasma Sources Science and Technology, 2014, 23(1): 015007. [25] Oh J S, Olabanji O T, Hale C, et al.Imaging gas and plasma interactions in the surface-chemical modification of polymers using micro-plasma jets[J]. Journal of Physics D: Applied Physics, 2011, 44(15): 155206. [26] Wang Ruixue, Gao Yuan, Zhang Cheng, et al.Dynamics of plasma bullets in a microsecond-pulse-driven atmospheric-pressure He plasma jet[J]. IEEE Transactions on Plasma Science, 2016, 44(4), 393-397. [27] Xian Yubin, Qaisrani M H, Yue Yuanfu, et al.Discharge effects on gas flow dynamics in a plasma jet[J]. Physics of Plasmas, 2016, 23(10): 1-84. [28] 邵涛, 章程, 于洋, 等. 空气中纳秒脉冲均匀介质阻挡放电研究[J]. 高电压技术, 2012, 38(5): 1045-1050. Shao Tao, Zhang Cheng, Yu Yang, et al.Study on homogeneous nanosecond-pulse dielctrice barrier discharge in atmospheric air[J]. High Voltage Engineering, 2012, 38(5): 1045-1050. [29] Fang Zhi, Shao Tao, Yang Jing, et al.Discharge processes and an electrical model of atmospheric pressure plasma jets in argon[J]. European Physical Journal D, 2016, 70(3): 1-8. |
|
|
|