|
|
Research and Implementation of a Frequency Tracking Technology for the Pulsed Induction Heating Power |
Wang Xiaona, Fang Xu, Tang Bo, Ye Shuliang |
Institute of Industry and Trade Measurement Technique China Jiliang University Hangzhou 310018 China |
|
|
Abstract In order to solve the problems of the slow searching resonant frequency and poor real-time performance of the frequency tracking in traditional induction heating power supplies, this paper proposes a modified all digital fixed-angle frequency tracking technology to meet the special demand of the induction heating power supply for pulsed eddy current thermography. First, the pulsed induction heating power system and operating principle were introduced. Then, the theoretical analysis of all digital fixed-angle frequency tracking technology was addressed in detail. The mathematical expressions of system steady and dynamic performance with system control parameters were established. The influences of the quality factor, initial frequency and stepped frequency on the dynamic performance of the system were further analyzed. Finally, experiments were conducted based on a pulsed induction heating power system to verify the performance of the modified all-digital fixed-angle frequency tracking technique. The simulation and experimental results show that this frequency tracking technique has the advantages of fast searching resonance frequency, good strong real-time tracking and good stability.
|
Received: 12 June 2017
Published: 26 September 2018
|
|
|
|
|
[1] Liu Jia, Tian Guiyun, Gao Bin, et al.Investigation of thermal imaging sampling frequency for eddy current pulsed thermography[J]. NDT & E International, 2014, 62(2): 85-92. [2] He Yunze, Luo Feilu, Pan Mengchun.Defect characterisation based on pulsed eddy current imaging technique[J]. Sensors & Actuators A: Physical, 2010, 164(1-2): 1-7. [3] He Yunze, Pan Mengchun, Luo Feilu, et al.Pulsed eddy current imaging and frequency spectrum analysis for hidden defect nondestructive testing and evaluation[J]. NDT & E International, 2011, 44(4): 344-352. [4] He Yunze, Tian Guiyun, Pan Mengchun, et al.Eddy current pulsed phase thermography and feature extraction[J]. Applied Physics Letters, 2013, 103(8): 1-4. [5] 王英, 陈辉明, 张仲超. 感应加热谐振电路新拓扑模型研究[J]. 浙江大学学报, 2005, 39(11): 1807-1810. Wang Ying, Chen Huiming, Zhang Zhongchao.Novel topology of resonant circuit for induction heating[J]. Journal of Zhejiang University, 2005, 39(11): 1807-1810. [6] Lucía O, Maussion P, Dede E J, et al.Induction heating technology and its applications: past developments, current technology, and future challenges[J]. IEEE Transactions on Industrial Electronics, 2013, 61(5): 2509-2520. [7] 冷朝霞, 刘庆丰. 基于多电平逆变器的感应加热双频率输出设计[J]. 电工技术学报, 2016, 31(24): 195-204. Leng Zhaoxia, Liu Qingfeng.Design of dual frequency output of induction heating based on multilevel inverter[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 195-204. [8] 卢华, 胡金刚, 毕闯, 等. 基于中心抽头变压器的倍频感应加热电源[J]. 电工技术学报, 2016, 31(24): 188-194. Lu Hua, Hu Jingang, Bi Chuang, et al.Frequency doubling power supply for induction heating based on center-tapped transformer[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 188-194. [9] Gui Y T, Gao Y, Li K, et al.Eddy current pulsed thermography with different excitation configurations for metallic material and defect characterization[J]. Sensors, 2016, 16(6): 843-854. [10] 金哲卿, 侯德鑫, 李运堂, 等. 涡流热成像检测中聚磁装置对激励性能的改善作用[J]. 仪表技术与传感器, 2015(7): 86-89. Jin Zheqing, Hou Dexin, Li Yuntang, et al.Improvement of stimulation performance by magnetic gathering device in eddy current thermography detecting[J]. Instrument Technique and Sensor, 2015(7): 86-89. [11] 孙于, 汪友华, 杨晓光, 等. 新型横向磁通感应加热线圈[J]. 电工技术学报, 2014, 29(4): 85-90. Sun Yu, Wang Youhua, Yang Xiaoguang, et al.A novel coil shape for transverse flux induction heating[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 85-90. [12] 段海雁, 张光先. 感应加热电源中的频率跟踪技术[J]. 电焊机, 2007, 37(2): 44-47. Duan Haiyan, Zhang Guangxian.Frequency tracking technology on induction heating power supply[J]. Electric Welding Machine, 2007, 37(2): 44-47. [13] 沈锦飞, 颜文旭, 惠晶, 等. 串联谐振式高频感应焊接逆变电源[J]. 焊接学报, 2003, 24(5): 77-80. Shen Jinfei, Yan Wenxu, Hui Jing, et al.Serial resonant high frequency induction welding power[J]. Transactions of the China Welding Institution, 2003, 24(5): 77-80. [14] 肖帅, 孙建波, 耿华, 等. 基于FPGA实现的可变模全数字锁相环[J]. 电工技术学报, 2012, 27(4): 153-158. Xiao Shuai, Sun Jianbo, Geng Hua, et al.FPGA based ratio changeable all digital phase-locked- loop[J]. Transactions of China Electrotechnical Society, 2012, 27(4): 153-158. [15] 尤波, 李松洋, 郑帅. 基于FPGA的自动变模控制感应加热电源全数字锁相环研究[J]. 自动化技术与应用, 2014, 33(11): 28-30. You Bo, Li Songyang, Zheng Shuai.All digital phase locked loop variable modulus automatic control of induction heating power supply based on FPGA[J]. Techniques of Automation & Applications, 2014, 33(11): 28-30. [16] You Bo, Wang Jie, Li Songyang.FPGA-based induction heating with variable modulus control all- digital phase-locked loop research[C]//International Conference on Measurement, Information and Control, Harbin, China, 2014: 1099-1102. [17] 张文, 姚福安, 侯磊. 基于FPGA实现的一种新型数字锁相环[J]. 现代电子技术, 2007, 30(4): 183-185. Zhang Wen, Yao Fuan, Hou Lei.A new digital phase locked loop based on FPGA[J]. Modern Electronics Technique, 2007, 30(4): 183-185. [18] Li Heming, Li Yabin, Peng Yonglong.FPGA-based all digital phase-locked loop controlled induction heating power supply operating at optimized ZVS mode[C]//IEEE Region 10 Conference, Hongkong, China, 2006: 1-4. [19] 刘亚静, 范瑜. 全数字硬件化锁相环参数分析与设计[J]. 电工技术学报, 2015, 30(2): 172-179. Liu Yajing, Fan Yu.Design and analysis of all-digital full-hardware phase-locked loop[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 172-179. [20] 陈辉明, 王英, 张仲超. 高频LLC感应加热电源及降低开关损耗策略研究[J]. 中国电机工程学报, 2006, 26(17): 67-71. Chen Huiming, Wang Ying, Zhang Zhongchao.Research on high frequency LLC induction heating power supply and decrease in the switching power loss[J]. Proceedings of the CSEE, 2006, 26(17): 67-71. |
|
|
|