|
|
Adaptive Detection and Preprocessing Method for Abnormal Wind Speed of Wind Farm Based on Deep Boltzmann Machine |
Lin Jie, Wu Butuo, Chen Wei |
School of Electrical and Information Engineering Lanzhou University of Technology Lanzhou 730050 China |
|
|
Abstract To improve the availability and accuracy of data acquisition system of existing wind power plant, this study puts forward the adaptive detection pretreatment method of abnormal wind speed value based on the deep Boltzmann machine (DBM), empirical mode decomposition (EMD) and hidden Markov model (HMM) combination algorithm. Due to the random variability of wind speed sequences, the DBM prediction method is adopted to excavate the potential characteristics of abnormal wind speed value, and get the residual sequences reflecting the anomaly wind speed value. In order to further improve the detection accuracy and reduce the system error interference, the EMD method is adopted to capture the characteristics of bulky errors of the residual sequences. With the help of the Dual stochastic process of HMM algorithm, the abnormal wind speed points are adaptively detected and eliminated, thereby avoid difficulty in accurate outlier identification of the traditional threshold detection method. Finally, in order to get a complete sequence of wind speed, weighted bi-directional ARMA algorithm is taken to revise the data of detected abnormal points. RBF prediction results verify that preprocessing can improve the quality of wind speed. The proposed method, compared with traditional wavelet outlier detection method, is more accurate in identification and further improves the prediction accuracy of short-term wind speed.
|
Received: 11 April 2018
Published: 26 September 2018
|
|
|
|
|
[1] 王奇. 风电场数据采集与处理软件设计[D]. 北京: 北京交通大学, 2012. [2] 叶瑞丽, 郭志忠, 刘瑞叶, 等. 基于小波包分解和改进Elman神经网络的风电场风速和风电功率预测[J]. 电工技术学报, 2017, 32(21): 103-111. Ye Ruili, Guo Zhizhong, Liu Ruiye, et al.Wind speed and wind power forecasting method based on wavelet packet decomposition and improved Elman neural network[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 103-111. [3] 陈伟, 郭建鹏, 裴喜平. 风电场短期风速变化区间与变化趋势预测算法[J]. 电力系统及其自动化学报, 2015, 28(9): 47-52. Chen Wei, Guo Jianpeng, Pei Xiping.Short term wind speed variation range and variation trend prediction algorithm for wind farm[J]. Proceedings of the CSU-EPSA, 2015, 28(9): 47-52. [4] 田中大, 李树江, 王艳红, 等. 基于小波变换的风电场短期风速组合预测[J]. 电工技术学报, 2015, 30(9): 112-120. Tian Zhongda, Li Shujiang, Wang Yanhong, et al.Short-term wind speed combined prediction for wind farms based on wavelet transform[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 112-120. [5] 修春波, 任晓, 李艳晴, 等. 基于卡尔曼滤波的风速序列短期预测方法[J]. 电工技术学报, 2014, 29(2): 253-259. Xiu Chunbo, Ren Xiao, Li Yanqing, et al.Short term forecasting method of wind speed series based on Calman filter[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 253-259. [6] Barnet V, Lewis T.Outlier in statistical data[M]. Chichester: John Wiley and Sons, 1994. [7] Wang J S, Chiang J C.A cluster validity measure with Outlier detection for support vector clustering[J]. IEEE Transactions on Systems Man and Cybernetics, Part B-Cybernetics, 2008, 38(1): 78-89. [8] 李丽, 叶林. 风速数据奇异点辨识研究[J]. 电力系统保护与控制, 2011, 39(21): 92-97. Li Li, Ye Lin.Research on singular point identification of wind speed data[J]. Power System Protection and Control, 2011, 39(21): 92-97. [9] 颜永龙, 李剑, 李辉, 等. 采用信息熵和组合模型的风电机组异常检测方法[J]. 电网技术, 2015, 39(3): 737-743. Yan Yonglong, Li Jian, Li Hui, et al.Anomaly detection method for wind turbines using information entropy and combined model[J]. Power System Technology, 2015, 39(3): 737-743. [10] 娄建楼, 胥佳, 陆恒, 等. 基于功率曲线的风电机组数据清洗算法[J]. 电力系统自动化, 2016, 40(10): 116-121. Lou Jianlou, Xu Jia, Lu Heng, et al.Wind turbine data-cleaning algorithm based on power curve[J]. Power System Automation, 2016, 40(10): 116-121. [11] Hiton G E, Osindero S, The Y W.A fast learning alogorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. [12] Roux N L, Bengio Y.Representational power of restricted Boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6): 1631-1649. [13] Bengio Y.Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1): 1-127. [14] Zhang C Y, Chen C L P, Gan M, et al. Predictive deep Boltzmann machine for multiperiod wind speed forecasting[J]. IEEE Transactions on Sustainable Energy, 2015, 6(4): 1416-1425. [15] Arel I, Rose D C, Karnowski T P.Deep machine learning a new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13-18. [16] 张亚超, 刘开培, 秦亮, 等. 基于聚类经验模态分解-样本熵和优化极限学习机的风电功率多步区间预测[J]. 电网技术, 2016, 40(7): 2045-2051. Zhang Yachao, Liu Kaipei, Qin Liang, et al.Wind power multi-step interval prediction based on ensemble empirical mode decomposition-sample entropy and optimized extreme learning machine[J]. Power System Technology, 2016, 40(7): 2045-2051. [17] Dileep D A, Chandra Sekhar C.HMM based intermediate matching kernel for classification of sequential patterns of speech using support vector machines[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(12): 2570-2582. [18] Bilmes J A. What HMMs can do[J]. IEICE- Transactions on Information and Systems, 2006, E89-D(3): 869-891. [19] Lou H L.Implementing the viterbi algorithm fundamentals and realrime issues for processor designers[J]. IEEE Signal Processing Magazine, 1995, 12(5): 42-52. [20] 张东英, 李伟花, 刘燕华, 等. 风电场有功功率异常运行数据重构方法[J]. 电力系统自动化, 2014, 38(5): 14-18, 24. Zhang Dongying, Li Weihua, Liu Yanhua, et al.Reconstruction method of wind farm active power abnormal operation data[J]. Power System Automation, 2014, 38(5): 14-18, 24. |
|
|
|