|
|
Static Estimation of the Integrated Power System with Medium Voltage DC and DC Zonal Distribution System |
Xiao Runlong, Wang Gang, Li Zimeng, Xiong Youxing |
National Key Laboratory for Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China |
|
|
Abstract The use of a network structure of medium-voltage DC transmission and DC-zonal electric distribution can significantly increase the power density and decrease the torque density of the vessel integrated power system. Because of difference in control strategies for the network structure and equipment, traditional state estimation methods for land power systems can not be applied directly to the integrated power system. This paper presents a model for the static estimation of the integrated power system and proposes a state estimation method for the whole system. According to real-time requirements, fast estimation methods for the subsystems are studied, and different interface variables are adopted independently to analyse their influence on the subsystems. A further decoupling of PQ through the DC zonal distribution system for implementing the fast state estimation aims to improve the practicability of the algorithm. Simulations prove the proposed fast state-estimation algorithm to be effective.
|
Received: 06 June 2017
Published: 12 July 2018
|
|
|
|
|
[1] Ma Weiming.A survey of the second-generation vessel integrated power system[C]//The International Conference on Advanced Power System Automation and Protection, Beijing, China, 2011: 1293-1302. [2] Ma Weiming.The integrated power system in warship[C]//IMECE'2003 The 5th International Marine Electrotechnology Conference Proceedings, 2003, 1(1): 2-7. [3] Benatmane M, Maltby R.Integrated electric power and propulsion system on land an overview[C]//IEEE Electric Ship Technology Symposium, Arlington, USA, 2007: 7-13. [4] Li Qi, Liang Jiaqi.Design issues and practical application challenges of DC shipboard distribuiton system protection[C]//Proceedings of the IEEE Electric Ship Technologies Symposium, Old Town Alexandria, Virginia, USA, 2015: 403-408. [5] Shen Z J, Roshandeh A M, Miao Zhenyu, et al.Ultrafast autonomous solid state circuit breakers for shipboard DC power distribution[C]//Proceedings of the IEEE Electric Ship Technologies Symposium, Old Town Alexandria, Virginia, USA, 2015: 299-305. [6] Abur A, Expósito A G.Power system state estimation: theory and implementation[M]. New York: Marcel Dekker, 2004. [7] 于尔铿. 电力系统状态估计[M]. 北京: 水利电力出版社, 1985. [8] Chen Yanbo, Ma Jin, Zhang Pu, et al.Robust state estimator based on maximum exponential absolute value[J]. IEEE Transactions on Smart Grid, 2017, 8(4): 1537-1544. [9] Chen Yanbo, Liu Feng, Mei Shengwei, et al.Toward adaptive robust state estimation based on MCC by using the generalized Gaussian density as kernel functions[J]. International Journal of Electrical Power & Energy Systems, 2015, 71: 297-304. [10] 陶勇, 邓焰, 陈桂鹏, 等. 下垂控制逆变器中并网功率控制策略[J]. 电工技术学报, 2016, 31(22): 115-124. Tao Yong, Deng Yan, Chen Guipeng, et al.Power flow control strategy for droop-controlled inverters[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 115-124. [11] 闫俊丽, 彭春华, 陈臣. 基于动态虚拟阻抗的低压微电网下垂控制策略[J]. 电力系统保护与控制, 2015, 43(21): 1-6. Yan Junli, Peng Chunhua, Chen Chen.Droop control strategy based on dynamic virtual impedance in low-voltage microgrid[J]. Power System Protection and Control, 2015, 43(21): 1-6. [12] 支娜, 张辉, 肖曦. 提高直流微电网动态特性的改进下垂控制策略研究[J]. 电工技术学报, 2016, 31(3): 31-39. Zhi Na, Zhang Hui, Xiao Xi.Research on the improved droop control strategy for improving the dynamic characteristics of DC microgrid[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 31-39. [13] 冉晓洪, 苗世洪, 吴英杰, 等. 基于最优功率分配的多端直流网络改进下垂控制策略[J]. 电工技术学报, 2016, 31(9): 16-24. Ran Xiaohong, Miao Shihong, Wu Yingjie, et al.An improved droop control strategy for multi-terminal DC grids based on optimal active power allocation[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 16-24. [14] 李浩然, 杨旭红, 冯成臣. 多逆变器并联下的输出阻抗分析和改进下垂控制策略研究[J]. 电力系统保护与控制, 2015, 43(20): 29-35. Li Haoran, Yang Xuhong, Feng Chengchen.Control strategy research of output impedance analysis and improved droop control based on multiple-inverters parallel[J]. Power System Protection and Control, 2015, 43(20): 29-35. [15] 徐玉琴, 马焕均. 基于改进下垂控制的逆变器并联运行技术[J]. 电力系统保护与控制, 2015, 43(7): 103-107. Xu Yuqin, Ma Huanjun.Parallel operation technology of inverters based on improved droop control[J]. Power System Protection and Control, 2015, 43(7): 103-107. [16] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591-2603. Lü Zhipeng, Sheng Wanxing, Zhong Qingchang, et al.Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16): 2591-2603. [17] 万玉建, 蒋成杰, 陆华军. 一种微电网并转孤模式切换时功率平衡计算方法[J]. 电气技术, 2015, 16(11): 40-43. Wan Yujian, Jiang Chengjie, Lu Huajun.The algorithm for power balance of micro-grid to solving the problem of grid-connected mode thansferring to islanding mode[J]. Electrical Engineering, 2015, 16(11): 40-43. [18] 张伯明, 陈寿孙. 高等电力网络分析[M]. 北京: 清华大学出版社, 1996. |
|
|
|