|
|
Optimized Damping Control of Power System Using Partial Left Eigenstructure Assignment |
Zhong Qishu1, Tang Zhijun2, Jin Tao1 |
1. College of Electrical Engineering and Automation Fuzhou University Fuzhou 350116 China; 2. State Grid Fujian Electric Power Research Institute Fuzhou 350007 China |
|
|
Abstract This paper presents an optimized design of power system damping controller based on partial eigenstructure assignment in linear systems. Eigenvalue and eigenvector of critical oscillating modal are set simultaneously using partial left eigenstructure assignment (PLEA). Extra control degrees of freedom is assigned to partial left eigenvector for improving dynamical damping performance of power system. A dynamical compensator type controller is introduced to replace traditional power system stabilizer (PSS). In this way, additional control freedom is increased and the requirement of inputs to the controller can be fulfilled using PLEA. In the last, weighting multi-objective sub-functions are built, and the parameter design of damping controller can be formulated as a single-objective nonlinear programming problem and solved using group search optimizer (GSO). Simulation results of IEEE-39 system model under multiple operating conditions demonstrate that the controller designed using proposed PLEA can efficaciously damp low-frequency oscillation in power system, yielding a better control performance and robustness in comparison than that of traditional PSS designed using residues method.
|
Received: 28 April 2017
Published: 12 July 2018
|
|
|
|
|
[1] Ilic M D, Zaborszky J.Dynamics and control of large electric power systems[M]. New York: Wiley, 2000. [2] 朱方, 赵红光, 刘增煌, 等. 大区电网互联对电力系统动态稳定性的影响[J]. 中国电机工程学报, 2007, 27(1): 1-7. Zhu Fang, Zhao Hongguang, Liu Zenghuang, et al.The influence of large power grid interconnected on power system dynamic stability[J]. Proceedings of the CSEE, 2007, 27(1): 1-7. [3] 王晖, 吴命利. 电气化铁路低频振荡研究综述[J]. 电工技术学报, 2015, 30(17): 70-78. Wang Hui, Wu Mingli.Review of low-frequency oscillation in electric railways[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 70-78. [4] 赵艺, 陆超, 柳勇军, 等. 基于辨识和留数的发电机广域附加阻尼控制器设计[J]. 电力系统保护与控制, 2012, 40(19): 1-6. Zhao Yi, Lu Chao, Liu Yongjun, et al.Wide-area generator supplementary damping controller design based on residue and identification methods[J]. Power System Protection and Control, 2012, 40(19): 1-6. [5] 张祥宇, 付媛, 王毅, 等. 含虚拟惯性与阻尼控制的变速风电机组综合PSS控制器[J]. 电工技术学报, 2015, 30(1): 159-169. Zhang Xiangyu, Fu Yuan, Wang Yi, et al.Integrated PSS controller of variable speed wind turbines with virtual inertia and damping control[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 159-169. [6] De Marco F, Martins N, Ferraz J C R. An automatic method for power system stabilizers phase compensation design[J]. IEEE Transactions on Power Systems, 2013, 28(2): 997-1007. [7] 奚鑫泽, 耿华, 杨耕. 含主动轴系扭振阻尼的并网双馈风电场惯量控制方法[J]. 电工技术学报, 2017, 32(6): 136-144. Xi Xinze, Geng Hua, Yang Geng.Inertia control of the grid connected doubly fed induction generator based wind farm with drive-train torsion active damping[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 136-144. [8] Richiedei D, Trevisani A.Simultaneous active control for eigenstructure assignment in lightly damped systems[J]. Mechanical Systems and Signal Processing, 2017, 85(1): 556-566. [9] Ferrese F, Dong Q, Nataraj N, et, al. Optimal feedback control of power systems using eigenstructure assignment and particle swarm optimization[J]. Naval Engineers Journal, 2011, 123(1): 67-75. [10] Belotti R, Trevisani A.Optimal design of vibrating systems through partial eigenstructure assignment[J]. Journal of Mechanical Design, 2016, 138(7): 15-21. [11] Bachelier O, Bosche J, Mehdi D.On pole placement via eigenstructure assignment approach[J]. IEEE Transactions on Automatic Control, 2006, 51(9): 1554-1558. [12] Konara A I, Annakkage U D.Robust power system stabilizer design using eigenstructure assignment[J]. IEEE Transactions on Power Systems, 2016, 31(3): 1845-1853. [13] Chen W L, Lin Y H.Systematic approach to synthesize a static synchronous compensator controller using eigenstructure assignment[J]. Electric Power Components and Systems, 2011, 39(12): 1191-1211. [14] Ke D P, Chung C Y.An eigenstructure-based performance index and its application to control design for damping inter-area oscillations in power systems[J]. IEEE Transactions on Power Systems, 2011, 26(4): 2371-2380. [15] Chen W L, Liang W G, Gau H S, et al.Design of a mode decoupling STATCOM for voltage control of wind-driven induction generator systems[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1758-1767. [16] Kshatriya N, Annakkage U D, Hughes F M, et al.Optimized partial Eigenstructure assignment-based design of a combined PSS and active damping for a DFIG[J]. IEEE Transactions on Power Systems, 2010, 25(2): 866-876. [17] 杜正春, 王毅, 张强, 等. 采用低阶动态补偿器的电力系统分散控制[J]. 中国电机工程学报, 2008, 28(31): 15-21. Du Zhengchun, Wang Yi, Zhang Qiang, et al.Decentralized control of power system by low-order dynamic compensators[J]. Proceedings of the CSEE, 2008, 28(31): 15-21. [18] Fahmy M M, Oreilly J.Multistage parametric eigenstructure assignment by output-feedback control[J]. International Journal of Control, 1988, 48(1): 97-116. [19] Saraf P, Balasubramaniam K, Hadidi R, et al.Design of a wide area damping controller based on partial right eigenstrucuture assignment[J]. Electric Power Systems Research, 2016, 134: 134-144. [20] He S, Wu Q H, Saunders J R.Group search optimizer: a optimization algorithm inspired by animal searching behavior[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 973-990. [21] Kishor N, Haarla L, Turunen J.Controller design with model identification approach in wide area power system[J]. IET Generation, Transmission and Distribution, 2014, 8(8): 1430-1443. [22] Gurunath G, Indraneel S.Power system stabilizers design for interconnected power systems[J]. IEEE Transactions on Power Systems, 2010, 25(2): 1042-1051. [23] Ajit K.Power system stabilizers design for multimachine power systems using local measurements[J]. IEEE Transactions on Power Systems, 2016, 31(3): 2163-2171. |
|
|
|