|
|
Research on Friction Characteristics and Modeling of Pantograph-Catenary Sliding Electrical Contact |
Guo Fengyi, Chen Mingyang, Chen Zhonghua, Shi Guang, Hui Lichuan |
Faculty of Electrical and Control Engineering Liaoning Technical University Huludao 125105 China |
|
|
Abstract The friction performance with current of the pantograph-catenary system of electrified railway is the key factor that affects the train current-carrying and the wear of pantograph slide. In this paper, the pin-on-disc high-speed current-carrying friction and wear experimental machine, with copper-impregnated carbon grinding pin and pure copper disc as friction pair, was used to obtain friction characteristics related to pressure load, sliding velocity and current density. The friction increases with the increase of the pressure load, decreases with the increase of the current density, and increases with the increase of the sliding speed. And with the increase of the pressure, the friction increases amplitude is slow. On the basis, the friction regression model was established by using support vector machine (SVM), which was related to pressure load, sliding speed and current density with the pantograph-catenary system. Genetic algorithm was used to optimize the parameters. The validity of the model is verified by the experimental data, which provides a reference for further research on the friction of pantograph-catenary system.
|
Received: 24 May 2017
Published: 12 July 2018
|
|
|
|
|
[1] 田磊, 孙乐民, 赵燕霞, 等. 波动载荷对C/C复合材料/铬青铜摩擦副载流摩擦磨损性能的影响[J]. 润滑与密封, 2011, 36(11): 37-40. Tian Lei, Sun Lemin, Zhao Yanxia, et al.Effects of fluctuating load on friction and wear property of C/C composite/QCr0.5 under electrical current[J]. Lubrication Engineering, 2011, 36(11): 37-40. [2] 吴广宁, 周悦, 雷栋, 等. 弓网电接触研究进展[J]. 高电压技术, 2016, 42(11): 3495-3506. Wu Guangning, Zhou Yue, Lei Dong, et al.Research advances in electric contact between pantograph and catenary[J]. High Voltage Engineering, 2016, 42(11): 3495-3506. [3] 陈忠华, 唐博, 时光, 等. 弓网多目标滑动电接触下最优压力载荷[J]. 电工技术学报, 2015, 30(17): 154-160. Chen Zhonghua, Tang Bo, Shi Guang, et al.Optimal pressure load under multi-objective sliding electric contact in the pantograph-catenary system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 154-160. [4] 李娜, 张弘, 于正平. 受电弓滑板─接触导线摩擦磨损机理与特性分析[J]. 中国铁道科学, 1996, 17(4): 63-68. Li Na, Zhang Hong, Yu Zhengping.Analysis of the mechanism and characteristics of friction and wear between pantograph slide block and contact wire[J]. China Railway Science, 1996, 17(4): 63-68. [5] Heyda P G, Thackray G J. Computer evaluation of electric railway catenary equipment by the method of normal modes[J]. IEEE Transactions on Industry Applications, 1981, IA-17(3): 321-329. [6] 章赛丹, 陈光雄, 杨红娟. 接触压力对碳滑板/铜接触线载流摩擦磨损性能的影响[J]. 润滑与密封, 2012, 37(9): 41-45. Zhang Saidan, Chen Guangxiong, Yang Hongjuan.Effect of contact pressure on friction and wear behavior of carbon strip/copper contact wire under AC passage[J]. Lubrication Engineering, 2012, 37(9): 41-45. [7] 胡艳, 董丙杰, 黄海, 等. 碳滑板/接触线摩擦磨损性能[J]. 交通运输工程学报, 2016, 16(2): 56-63. Hu Yan, Dong Bingjie, Huang Hai, et al.Friction and wear behavior of carbon strip/contact wire[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 56-63. [8] Bucca G, Collina A.A procedure for the wear prediction of collector strip and contact wire in pantograph-catenary system[J]. Wear, 2009, 266(1-2): 46-59. [9] Chen Guangxiong, Li Fengxue, Dong Lin, et al.Friction and wear behaviour of stainless steel rubbing against copper-impregnated metallized carbon[J]. Tribology International, 2009, 42(6): 934-939. [10] Ding Tao, Chen Guangxiong, Wang Xin, et al.Friction and wear behavior of pure carbon strip sliding against copper contact wire under AC passage at high speeds[J]. Tribology International, 2011, 44(4): 437-444. [11] 上官博, 徐自力, 肖俊峰, 等. 一种正压力随时间变化的微滑移干摩擦模型[J]. 振动工程学报, 2016, 29(3): 444-451. Shangguan Bo, Xu Zili, Xiao Junfeng, et al.A microslip dry friction model with variable normal load[J]. Journal of Vibration Engineering, 2016, 29(3): 444-451. [12] Palli G, Melchiorri C.Friction compensation techniques for tendon-driven robotic hands[J]. Mechatronics, 2014, 24(2): 108-117. [13] 郭凤仪, 马同立, 陈忠华, 等. 不同载流条件下滑动电接触特性[J]. 电工技术学报, 2009, 24(12): 18-23. Guo Fengyi, Ma Tongli, Chen Zhonghua, et al.Characteristics of the sliding electric contact under different currents[J]. Transactions of China Electrotechnical Society, 2009, 24(12): 18-23. [14] 陈忠华, 康立乾, 石英龙, 等. 弓网滑动电接触电流稳定性研究[J]. 电工技术学报, 2013, 28(10): 127-133. Chen Zhonghua, Kang Liqian, Shi Yinglong, et al.Study of current stability in pantograph-catenary sliding electric contact[J]. Transactions of China Electrotechnical Society, 2013, 28(10): 127-133. [15] 陈忠华, 石英龙, 时光, 等. 受电弓滑板与接触网导线接触电阻计算模型研究[J]. 电工技术学报, 2013, 28(5): 188-195. Chen Zhonghua, Shi Yinglong, Shi Guang, et al.Calculation model of the contact resistance between pantograph slide and contact wire[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 188-195. [16] Nandi A K, Azzouz E E.Modulation recognition using artificial neural networks[J]. Signal Processing, 1997, 56(2): 165-175. [17] 戴利民, 林吉中, 丁新华. 滑板材料受流摩擦时接触点瞬态温升对磨损性能的影响[J]. 中国铁道科学, 2002, 23(2): 111-117. Dai Limin, Lin Jizhong, Ding Xinhua.Effects of transient temperature rise in contact area on wear properties[J]. China Railway Science, 2002, 23(2): 111-117. [18] Zhai Hongxiang, Huang Zhenying.Instabilities of sliding friction governed by asperity interference mechanisms[J]. Wear, 2004, 257(3-4): 414-422. [19] 冀盛亚, 孙乐民, 上官宝, 等. 表面粗糙度对黄铜/铬青铜摩擦副载流摩擦磨损性能影响的研究[J]. 润滑与密封, 2009, 34(1): 29-31. Ji Shengya, Sun Lemin, Shangguan Bao, et al.Tibological characteristics of H68/QCr0.5 rubbing pairs under electic current with different surface roughness[J]. Lubrication Engineering, 2009, 34(1): 29-31. [20] Csapo E, Zaidi H, Paulmier D.Friction behaviour of a graphite-graphite dynamic electric contact in the presence of argon[J]. Wear, 1996, 192(1-2): 151-156. [21] Paulmier D, Mansori M E, Zaidi H.Study of magnetized or electrical sliding contact of a steel XC48/graphite couple[J]. Wear, 1997, 203(1): 148-154. [22] Senouci A, Frene J, Zaidi H.Wear mechanism in graphite-copper electrical sliding contact[J]. Wear, 1999, 225(98): 949-953. [23] Gomes J R, Miranda A S, Vieira J M, et al.Sliding speed-temperature wear transition maps for Si3N4/iron alloy couples[J]. Wear, 2001, 250(1-12): 293-298. [24] 郭凤仪, 王喜利, 王智勇, 等. 弓网电弧辐射电场噪声实验研究[J]. 电工技术学报, 2015, 30(14): 220-225. Guo Fengyi, Wang Xili, Wang Zhiyong, et al.Research on radiated electric field noise of pantograph arc[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 220-225. [25] 胡怡, 魏文赋, 雷栋, 等. 弓网电弧等离子体光谱特性实验[J]. 电工技术学报, 2016, 31(24): 62-70. Hu Yi, Wei Wenfu, Lei Dong, et al.Experimental investigation on spectral characteristics of pantograph-catenary arc plasma[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 62-70. [26] Ray S, Chowdhury S K R. Prediction of contact temperature rise between rough sliding bodies: an artificial neural network approach[J]. Wear, 2009, 266(9-10): 1029-1038. [27] 金敏, 鲁华祥. 一种遗传算法与粒子群优化的多子群分层混合算法[J]. 控制理论与应用, 2013, 30(10): 1231-1238. Jin Min, Lu Huaxiang.A multi-subgroup hierarchical hybrid of genetic algorithm and particle swarm optimization[J]. Control Theroy & Application, 2013, 30(10): 1231-1238. [28] Duan Kaibo, Keerthi S S, Poo A N.Evaluation of simple performance measures for tuning SVM hyperparameters[J]. Neurocomputing, 2003, 51(2): 41-59. |
|
|
|