|
Abstract This paper presents a multi-source coordinated model considering the dispatchability of nuclear power plants. Based on the actual operation experience and a large number of existing nuclear power simulation research results, the dispatchability of nuclear power, namely its peak-shaving feasibility, is analyzed. Then, the security adjustable region of nuclear power plants and operational constraints are proposed, the peak-shaving operation model is constructed as well. Based on the operational characteristics of nuclear power, two-stage dispatching method is adopted. Low power operation time of nuclear power is determined at pre-scheduling stage, and then the depth of peak shaving is optimized at re-scheduling stage. Finally, the optimal peak-shaving operation mode of the nuclear power is obtained. As for the uncertainties of wind power and solar power, the robust optimization method is employed to ensure the feasibility of scheduling decision. Through two typical cases of wet season and dry season, the results indicate that the proposed model can not only guarantee the safe operation of the nuclear power plants but also the economy, realizing the full consumption of specified amount of renewable energy. Besides, it effectively coordinates the power generation space of various power sources and balance the interests of all parties.
|
Received: 06 June 2017
Published: 22 June 2018
|
|
|
|
|
[1] Dahlan N Y, Ibrahim A, Rajemi M F, et al.Analysis of the impact of nuclear power plant on Malaysia's power systems: costs, CO2 emission and system reliability[C]//IEEE International Conference Power & Energy, Kuching, Malaysia, 2014: 206-211. [2] Trehan N K, Saran R.Nuclear power revival[C]// IEEE Nuclear Science Symposium Conference Record, Portland, OR, USA, 2003: 3630-3633. [3] 熊莉, 刘涤尘, 赵洁, 等. 大型核电站接入系统运行方案研究[J]. 电力系统保护与控制, 2011, 39(6): 50-54. Xiong Li, Liu Dichen, Zhao Jie, et al.Study on program of connecting nuclear power plant to power grids[J]. Power System Protection and Control, 2011, 39(6): 50-54. [4] 熊莉, 刘涤尘, 赵洁, 等. 大型核电站的建模及接入电网的相互影响[J]. 电力自动化设备, 2011, 31(5): 10-14. Xiong Li, Liu Dichen, Zhao Jie, et al.Large nuclear power plant modeling and grid-connection influence[J]. Electric Power Automation Equipment, 2011, 31(5): 10-14. [5] 赵洁, 刘涤尘, 吴耀文. 压水堆核电厂接入电力系统建模[J]. 中国电机工程学报, 2009, 29(31): 8-13. Zhao Jie, Liu Dichen, Wu Yaowen.Modelling of pressurized water reactor nuclear power plant integrated into power system simulation[J]. Proceedings of the CSEE, 2009, 29(31): 8-13. [6] 晁晖, 于大海, 夏潮. 核电机组原动机调节系统实测建模与仿真研究[J]. 中国电机工程学报, 2015, 35(2): 368-374. Chao Hui, Yu Dahai, Xia Chao.Modeling test and simulation of prime mover and governor for nuclear power plant[J]. Proceedings of the CSEE, 2015, 35(2): 368-374. [7] 孙文涛, 刘涤尘, 赵洁, 等. 大型压水堆核电机组失磁动态特性及机理研究[J]. 中国电机工程学报, 2014, 34(10): 1538-1545. Sun Wentao, Liu Dichen, Zhao Jie, et al.Study on dynamic characteristics and mechanism of the loss of excitation of large-scale pressurized water reactor nuclear power plant[J]. Proceedings of the CSEE, 2014, 34(10): 1538-1545. [8] 吴国旸, 宋新立, 鞠平, 等. 大型核电机组涉网保护与电网安全自动装置的协调控制原则[J]. 电力系统自动化, 2014, 38(3): 178-183. Wu Guoyang, Song Xinli, Ju Ping, et al.Coordination and control principle between grid-related protection of large-scale nuclear units and security automatic devices of power grids[J]. Automation of Electric Power Systems, 2014, 38(3): 178-183. [9] 施希, 吴萍, 赵洁, 等. 压水堆核电厂负荷跟踪系统设计与特性研究[J]. 核动力工程, 2010, 31(6): 102-105. Shi Xi, Wu Ping, Zhao Jie, et al.Research on load- following characteristics of pressurized water reactor nuclear power plants[J]. Nuclear Power Technology, 2010, 31(6): 102-105. [10] 吴萍, 刘涤尘, 赵洁, 等. 基于模糊自适应PID控制的压水堆负荷跟踪[J]. 电网技术, 2011, 35(4): 76-81. Wu Ping, Liu Dichen, Zhao Jie, et al.Fuzzy adaptive PID control-based load following of pressurized water reactor[J]. Power System Technology, 2011, 35(4): 76-81. [11] 赵洁, 刘涤尘, 杨楠, 等. 核电机组参与电网调峰的运行方式及效益分析[J]. 电网技术, 2012, 36(12): 250-255. Zhao Jie, Liu Dichen, Yang Nan, et al.Operation mode and benefits of nuclear power plant partici- pating in peak poad pegulation of power system[J]. Power System Technology, 2012, 36(12): 250-255. [12] 赵洁, 刘涤尘, 雷庆生, 等. 核电机组参与电网调峰及与抽水蓄能电站联合运行研究[J]. 中国电机工程学报, 2011, 31(7): 1-6. Zhao Jie, Liu Dichen, Lei Qingsheng, et al.Analysis of nuclear power plant participating in peak load regulation of power grid and combined operation with pumped storage power plant[J]. Proceedings of the CSEE, 2011, 31(7): 1-6. [13] Lee S S, Yong T Y, Moon S I, et al.Smart grid based nuclear load-following operation strategies in the South Korean power system[C]//Power and Energy Society General Meeting, Vancouver, BC, Canada, 2013: 1-5. [14] 马习朋. 大型压水堆核电机组参与电网中间负荷调峰的探讨[J]. 山东电力技术, 2007(6): 35-40. Ma Xipeng.Discussion on large-scale PWR power plants participating in sufficing peak-load of grid[J]. Shandong Electric Power Technology, 2007(6): 35-40. [15] Zhang T, Ma X D, Zhu Y, et al. A research summary on combined peaking load strategies of nuclear power plant[J]. Advanced Materials Research, 2014, 986- 987: 196-201. [16] Xu Y H, Wang Z Z, Sun W, et al.Unit commitment model considering nuclear power plant load following[C]//International Conference on Advanced Power System Automation and Protection, Beijing, 2012: 1828-1832. [17] 马晓东. 核电参与电网调峰的运行策略研究[D]. 沈阳: 沈阳工业大学, 2015. [18] 吕翔, 刘国静, 周莹. 含抽水蓄能的风水火联合机组组合研究[J]. 电力系统保护与控制, 2017, 45(12): 35-43. Lü Xiang, Liu Guojing, Zhou Ying.Research on combined unit commitment of wind power-hydro power-thermal-power for the power system with pumped hydro storage[J]. Power System Protection and Control, 2017, 45(12): 35-43. [19] 葛晓琳, 张粒子. 考虑调峰约束的风水火随机机组组合问题[J]. 电工技术学报, 2014, 29(10): 222-230. Ge Xiaolin, Zhang Lizi.Wind-hydro-thermal stochastic unit commitment problem considering the peak regulation constraints[J]. Transactions of China Electrotechnical Society, 2014, 29(10): 222-230. [20] 施涛, 高山, 张宁宇. 含风电场的机组组合二阶段随机模型及其改进算法[J]. 电工技术学报, 2016, 31(16): 172-180. Shi Tao, Gao Shan, Zhang Ningyu.Two-stage stochastic model of unit commitment with wind farm and an improved algorithm[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 172-180. [21] 杨天, 王京波, 宋少帅, 等. 考虑风速相关性的电力系统动态经济调度[J]. 电工技术学报, 2016, 31(16): 189-197. Yang Tian, Wang Jingbo, Song Shaoshuai, et al.Dynamic economic dispatch of power system considering the correlation of the wind speed[J]. Transactions of China Electrotechnical Society, 2016, 31(16): 189-197. [22] Bertsimas D, Litvinov E, Sun X A, et al.Adaptive robust optimization for the security constrained unit commitment problem[J]. IEEE Transactions on Power Systems, 2013, 28(1): 52-63. [23] Jiang R, Wang J, Guan Y.Robust unit commitment with wind power and pumped storage hydro[J]. IEEE Transactions on Power Systems, 2012, 27(2): 800-810. [24] 国务院. 国务院办公厅关于转发发展改革委等部门《节能发电调度办法(试行)》的通知(国办发[2007]53号文)[Z]. 2007. [25] 艾小猛, 韩杏宁, 文劲宇, 等. 考虑风电爬坡事件的鲁棒机组组合[J]. 电工技术学报, 2015, 30(24): 188-195. Ai Xiaomeng, Han Xingning, Wen Jinyu, et al.Robust unit commitment considering wind power ramp events[J]. Transactions of China Electro- technical Society, 2015, 30(24): 188-195. [26] 邓俊, 韦化, 黎静华, 等. 一种含四类0-1变量的机组组合混合整数线性规划模型[J]. 中国电机工程学报, 2015, 35(11): 2770-2778. Deng Jun, Wei Hua, Li Jinghua, et al.A mixed integer linear programming model using four sets of binary variables for the unit commitment[J]. Pro- ceedings of the CSEE, 2015, 35(11): 2770-2778. [27] Rosenthal R E.GAMS—A user’s guide[M]. USA: GAMS Development Corporation, 2012. [28] Gurobi Corp. Gurobi optimizer[EB/OL].[2016-10-10]. http://www.gurobi.com. |
|
|