|
|
Numerical Simulation of Wind Turbine Blades Aerodynamic Performance Based on Ice Roughness Effect |
Li Hantao, Shu Lichun, Hu Qin, Jiang Xingliang, Qiu Gang |
State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China; |
|
|
Abstract Wind turbines in humid and cold regions often suffer blades icing problems resulting in the loss of power generation. In the paper, the CFD methods combining with ice equivalent roughness model are carried out on NREL S809 airfoils and a 300kW wind turbine rotor to investigate the influence of ice roughness on aerodynamic performance of wind turbine blades. The conclusions are as follows. For slight ice not to change the airfoil shape, the 2D profile aerodynamic performance decreases with the increase of ice surface width and ice roughness height, especially more remarkably in higher AOAs (angle of attack). For rime or glaze ice, glaze ice causes greater damage, however, the rime-iced profile is influenced by ice roughness more significantly. In terms of 3D rotor with iced blades, the aerodynamic performance declines more dramatically at higher wind speed. In addition, both the output torque and axial thrust of the rotor decrease with the increase of ice roughness, and the downtrends are becoming more apparent with the increase of the wind speed. The results will provide a valuable reference for both wind farm operation and generator system evaluation in icing districts.
|
Received: 12 December 2016
Published: 24 May 2018
|
|
|
|
|
[1] 沈小军, 杜万里. 大型风力发电机偏航系统控制策略研究现状及展望[J]. 电工技术学报, 2015, 30(10): 196-203. Shen Xiaojun, Du Wanli.Expectation and review of control strategy of large wind turbines yaw system[J]. Transaction of China Electrotechnical Society, 2015, 30(10): 196-203. [2] 绳晓玲, 万书亭, 李永刚, 等. 基于坐标变换的双馈风力发电机组叶片质量不平衡故障诊断[J]. 电工技术学报, 2016, 31(7): 188-197. Sheng Xiaoling, Wan Shuting, Li Yonggang, et al.Fault diagnosis for blade mass imbalance of wind turbines with DFIG based on coordinate trans- formation[J]. Transaction of China Electrotechnical Society, 2016, 31(7): 188-197. [3] Battisti L.Wind turbines in cold climates[M].New York: Spriger-Verlag, 2015. [4] 申晓东, 时连斌, 刘洪海, 等. 风力发电机组防覆冰技术研究[J]. 电气技术, 2013, 14(6): 48-51. Shen Xiaodong, Shi Lianbin, Liu Honghai, et al.The anti-icing technique research for wind turbine[J]. Electrical Engineering, 2013, 14(6): 48-51. [5] 蒋程, 张建华, 刘先正, 等. 计及运行工况的风电机组停运模型[J]. 电力系统保护与控制, 2013, 41(24): 112-116. Jiang Cheng, Zhang Jianhua, Liu Xianzheng, et al.Wind turbine outage model based on operation condition[J]. Power System Protection and Control, 2013, 41(24): 112-116. [6] John F.Wind power development in sub-arctic conditions with se Vere rime icing[C]//Circumpolar Climate Change Summit and Exposition, Whitehorse, Yukon, Canada, 2001: 174-183. [7] Etemaddar M, Hansen M O L, Moan1 T. Wind turbine aerodynamic response under atmospheric icing conditions[J]. Wind Energy, 2014, 17(2): 241-265. [8] Homola M C, Virk M S, Nicklasson P J, et al.Performance losses due to ice accretion for a 5 MW wind turbine[J]. Wind Energy, 2012, 15(3): 379-389. [9] Mortensen K.CFD simulations of an airfoil with leading edge ice accretion[D]. Copenhagen: Tech- nical University of Denmark, 2008. [10] Homola M C, Virk M S, Wallenius T, et al.Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2010, 98(12): 724-729. [11] Lamraoui F, Fortin G, Benoit R, et al.Atmospheric icing impact on wind turbine production[J]. Cold Regions Science & Technology, 2014, 100(4): 36-49. [12] Han Y, Palacios J, Schmitz S.Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of Wind Engineering & Industrial Aerody- namics, 2012, 109: 55-67. [13] Barber S, Wang Y, Jafari S, et al.The Impact of ice formation on wind turbine performance and aerodynamics[J]. Journal of Solar Energy Engin- eering, 2011, 133(1): 311-328. [14] Jha P, Brillembourg D, Schmitz S.Wind turbines under atmospheric icing conditions-ice accretion modeling, aerodynamics and control strategies for mitigating performance degradation[M]. 2012. [15] 刘丹, 李军向, 薛忠民, 等. 风力发电机叶片数值模拟综述[J]. 电气技术, 2010, 11(7): 7-11. Liu Dan, Li Junxiang, Xue Zhongmin, et al.The review of numerical simulation of wind turbine blade[J]. Electrical Engineering, 2010, 11(7): 7-11. [16] 张聘亭, 杨涛, 卢绪祥. 覆冰对风力机专用翼型气动性能影响的数值研究[J]. 动力工程学报, 2011, 31(12): 955-959. Zhang Pinting, Yang Tao, Lu Xuxiang.Influence of icing pattern on aerodynamic performance of wind turbine airfoils[J]. Journal of Chinese Society of Power Engineering, 2011, 31(12): 955-959. [17] 蒋传鸿. 风力机结冰翼型的气动性能分析及优化设计[D]. 重庆: 重庆大学, 2014. [18] 郝艳捧, 刘国特, 阳林, 等. 风力机组叶片覆冰数值模拟及其气动载荷特性研究[J]. 电工技术学报, 2015, 30(10): 292-300. Hao Yanpeng, Liu Guote, Yang Lin, et al.Study of ice numerical simulation and its power loss characteristics for the blades of wind turbine[J]. Transaction of China Electrotechnical Society, 2015, 30(10): 292-300. [19] 舒立春, 任晓凯, 胡琴, 等. 环境参数对小型风力发电机叶片覆冰特性及输出功率的影响[J]. 中国电机工程学报, 2016, 36(21): 5873-5878. Shu Lichun, Ren Xiaokai, Hu Qin, et al.Influences of environmental parameters on icing characteristics and output power of small wind turbine[J]. Proceedings of the CSEE, 2016, 36(21): 5873-5878. [20] 王浩, 王洪涛, 王春义. 计及冰雪天气影响的风电场短期出力模型[J]. 电力系统保护与控制, 2016, 44(8): 107-114. Wang Hao, Wang Hongtao, Wang Chunyi.A short-term output model of wind farm considering rain-snow-ice weather[J]. Power System Protection and Control, 2016, 44(8): 107-114. [21] 王丽婕, 廖晓钟, 高阳, 等. 风电场发电功率的建模和预测研究综述[J]. 电力系统保护与控制, 2009, 37(13): 118-121. Wang Lijie, Liao Xiaozhong, Gao Yang, et al.Summarization of modeling and prediction of wind power generation[J]. Power System Protection and Control, 2009, 37(13): 118-121. [22] 张骏, 袁奇, 吴聪, 等. 大型风力机叶片表面粗糙度效应数值研究[J]. 中国电机工程学报, 2014, 34(20): 3384-3391. Zhang Jun, Yuan Qi, Wu Cong, et al.Numerical simulation on the effect of surface roughness for large wind turbine blades[J]. Proceedings of the CSEE, 2014, 34(20): 3384-3391. [23] Ruff G A, Berkowitz B M.Users manual for the NASA Lewis ice accretion prediction code (LEWICE)[R]. NASA-CR-185129.1990. [24] Shin J, Bond T H.Experimental and computational ice shapes and resulting drag increase for a NACA 0012 airfoil[Z]. 1992. [25] Shin J.Characteristics of surface roughness associated with leading-edge ice accretion[J]. Journal of Aircraft, 2015, 33(2): 316-321. |
|
|
|