|
|
A Novel Fast Collector Trench Insulated Gate Bipolar Transistor |
Jiang Mengxuan1, Shuai Zhikang2, Shen Zheng2, Wang Jun2, Liu Daoguang3 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 3. Institute of Nuclear and New Energy Technology Tsinghua University Beijing 100084 China |
|
|
Abstract This paper proposes a novel collector trench insulated gate bipolar transistor (CT-IGBT) with an electron extraction channel formed on the collector side to enhance the electron extraction effect, in which a low doped n-type layer is introduced to increase hole injection efficiency at the collector side. TCAD simulation indicates that the proposed IGBT structure offers a turn-off fall time 49% lower and avalanche energy 32% higher than a conventional field-stop IGBT (FS-IGBT). Therefore, the proposed IGBT is attractive for high-speed and large-power electronic converters.
|
Published: 16 January 2018
|
|
Fund:国家高技术研究发展计划(2014AA052601)和中央高校基本科研业务费专项项目(106112017CDJXY150099)资助 |
Corresponding Authors:
蒋梦轩 男,1984年生,博士,讲师,研究方向为电力电子器件、封装及其电力电子系统应用。E-mail: 250151391@qq.com
|
|
|
|
[1] Laska T, Munzer M, Pfirsch F, et al. The field-stop IGBT (FS IGBT)—a new power device concept with a great improvement potential[C]//IEEE Proceedings of 12th International Symposium on Power Semi- conductor Devices & ICs (ISPSD), Toulouse, France, 2000: 355-358. [2] Nakamura K, Kusunoki S, Nakamura H, et al. Advanced wide cell pitch CSTBTs having light punch-through (LPT) structure[C]//IEEE Proceedings of 14th International Symposium on Power Semi- conductor Devices & ICs (ISPSD), Sante Fe, USA, 2002: 277-280. [3] Takahashi H, Yamamoto A, Aono S, et al. 1200V reverse ronducting IGBT[C]//IEEE Proceedings of 16th International Symposium on Power Semi- conductor Devices & ICs (ISPSD), Kitakyushu, Japan, 2004: 133-136. [4] Mori M, Oyama K, Arai T, et al. A planar gate high-conductivity IGBT (HiGT) with hole barrier layer[J]. IEEE Transactions on Electronic Devices, 2007, 54(6): 1515-1520. [5] Sumitomo M, Sakane H, Arakawa K, et al. Injection control technique for high speed switching with a double gate PNM-IGBT[C]//IEEE Proceedings of 25th International Symposium on Power Semi- conductor Devices & ICs (ISPSD), Kanazawa, Japan, 2013: 33-36. [6] Gejo R, Ogura T, Nakamura K, et al. Ideal carrier profile control for high-speed switching of 1200V IGBTs[C]//IEEE Proceedings of 26th International Symposium on Power Semiconductor Devices & ICs (ISPSD), Waikoloa, USA, 2014: 99-102. [7] Suekawa E, Tomomatsu Y, Enjoji T, et al. High voltage IGBT (HV-IGBT) having P+/P- collector region[C]//IEEE Proceedings of 10th International Symposium on Power Semiconductor Devices & ICs (ISPSD), Kyoto, Japan, 1998: 249-252. [8] Tu S L, Tam G, Tam P, et al. Analysis of direct wafer bond IGBTs with heavily doped n+ buffer layer[C]// IEEE Proceedings of 8th International Symposium on Power Semiconductor Devices & ICs (ISPSD), Maui, USA, 1996: 339-342. [9] Huang S, Sheng K, Udrea F, et al. A dynamic N-buffer insulated gate bipolar transistor[J]. Solid State Electronics, 2001, 45(1): 173-182. [10] Antoniou M, Udrea F, Bauer F, et al. The soft punchthrough+superjunction insulated gate bipolar transistor: a high speed structure with enhanced electron injection[J]. IEEE Transaction on Electronic Devices, 2011, 58(3): 769-775. [11] Jiang Mengxuan, Yin X, Shuai Z, et al. An insulated-gate bipolar transistor with a collector trench electron extraction channel[J]. IEEE Electronic Device Letters, 2015, 36(9): 935-937. [12] Baliga B J. Fundamentals of power semiconductor devices[M]. New York: Springer, 2008. [13] Khanna V K. The insulated gate bipolar transistor theory and design[M]. New York: John Wiley and Sons, 2003. [14] 赖伟, 陈民铀, 冉立, 等. 老化实验条件下的IGBT寿命预测模型[J]. 电工技术学报, 2016, 31(24): 173-180. Lai Wei, Chen Minyou, Ran Li, et al. IGBT lifetime model based on aging experiment[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 173-180. [15] 杜雄, 李高显, 刘洪纪, 等. 风速概率分布对风电变流器中功率器件寿命的影响[J]. 电工技术学报, 2015, 30(15): 109-117. Du Xiong, Li Gaoxian, Liu Hongji, et al. Effect of wind speed probability distribution on lifetime of power semiconductors in the wind power con- verters[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 109-117. [16] 陈民铀, 高兵, 杨帆, 等. 基于电-热-机械应力多物理场的IGBT焊料层健康状态研究[J]. 电工技术学报, 2015, 30(20): 252-260. Chen Minyou, Gao Bing, Yang Fan, et al. Healthy evaluation on IGBT solder based on electro-thermal- mechanical analysis[J]. Transactions of China Elec- trotechnical Society, 2015, 30(20): 252-260. [17] 李学生, 张新闻, 常玉峰, 等. 基于半导体功率损耗的小型风电变换器可靠性研究[J]. 电力系统保护与控制, 2015, 43(19): 15-21. Li Xuesheng, Zhang Xinwen, Chang Yufeng, et al. Small wind power converter reliability research based on semiconductor power loss[J]. Power System Protection and Control, 2015, 43(19): 15-21. |
|
|
|