|
|
Transmission Line Fault Location Method Based on Compressed Sensing Estimation of Traveling Wave Natural Frequencies |
Yu Huanan1, Ma Congcong1, Wang He2 |
1. School of Information Engineering Northeast Dianli University Jilin 132012 China; 2. School of Electrical Engineering Northeast Dianli University Jilin 132012 China |
|
|
Abstract In this paper, a fault location method for transmission lines based on compressed sensing is proposed, it can precisely estimate the natural frequencies of multiple traveling waves with high accuracy of fault location. According to the frequency domain characteristics of the fault traveling wave signal, a new over-complete dictionary is designed to make the traveling wave signal sparse. When fault location is performing, use wavelet modulus maxima method to determine the boundary frequency of fault signals first, then use FIR filter to filter out low frequency interference and transform into the frequency domain to ensure it is in the over-complete dictionary sparse representation. On this basis, a modified OMP algorithm based on Dice coefficients (DOMP algorithm) is used to reconstruct a frequency domain signal of traveling waves and accurately identifies the natural frequency values of the traveling wave signal. Finally combine the reflection angle and the wave velocity to achieve accurate fault location. The simulation results show that the method of dictionary design combined with DOMP algorithm have high location accuracy and reliability.
|
Received: 23 January 2017
Published: 22 December 2017
|
|
|
|
|
[1] 李再华, 刘明昆. 电力系统故障的智能诊断综述[J]. 电气技术, 2010(8): 21-24. Li Zaihua, Liu Mingkun. Review of intelligence fault diagnosis in power system[J]. Electrical Engineering, 2010(8): 21-24. [2] 索南加乐, 宋国兵, 许庆强, 等. 利用两端非同步电流的同杆双回线故障定位研究[J]. 电工技术学报, 2004, 19(8): 99-106. Suonan Jiale, Song Guobing, Xu Qingqiang, et al. Fault location algorithms for parallel transmission lines using two terminals nonsynchronized current data[J]. Transactions of China Electrotechnical Society, 2004, 19(8): 99-106. [3] 高艳丰, 朱永利, 闫红艳, 等. 基于VMD和TEO的高压输电线路雷击故障测距研究[J]. 电工技术学报, 2016, 31(1): 24-33. Gao Yanfeng, Zhu Yongli, Yan Hongyan, et al. Study on lighting fault locating of high-voltage transmission lines based on VMD and TEO[J]. Transactions of China Electrotechnical Society, 2016, 31 (1): 24-33. [4] 陈仕龙, 谢佳伟, 毕贵红, 等. 一种特高压直流输电线路神经网络双端故障测距新方法[J]. 电工技术学报, 2015, 30(4): 257-264. Cheng Shilong, Xie Jiawei, Bi Guihong, et al. A novel two terminal fault location method used ANN for UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 257-264. [5] 宋国兵, 蔡新雷, 高淑萍, 等. 高压直流输电线路故障定位研究综述[J]. 电力系统保护与控制, 2012, 40(5): 133-137, 147. Song Guobing, Cai Xinlei, Gao Shuping, et al. Survey of fault location research for HVDC transmission lines[J]. Power System Protection and Control, 2012, 40(5): 133-137, 147. [6] Lin S, He Z Y, Li X P. Travelling wave time-frequency characteristic-based fault location method for transmission lines[J]. The Institution of Engineering and Technology, 2012, 6(8): 764-772. [7] 邬林勇, 何正友, 钱清泉. 单端行波故障测距的频域方法[J]. 中国电机工程学报, 2008, 25(17): 99-104. Wu Linyong, He Zhengyou, Qian Qingquan. A frequency domain approach to single-ended traveling wave fault location[J]. Proceedings of the CSEE, 2008, 25(17): 99-104. [8] 朱永利, 范新桥, 尹金良. 基于三点电流测量的输电线路行波故障定位新方法[J]. 电工技术学报, 2012, 27(3): 260-268. Zhu Yongli, Fan Xinqiao, Yin Jinliang. A new fault location scheme for transmission lines based on traveling waves of three measurements [J]. Transactions of China Electrotechnical Society, 2012, 27(3): 260-268. [9] 黄子俊, 陈允平. 基于小波变换模极大值的输电线路单端故障定位[J]. 电力自动化设备, 2005, 25(2): 10-14. Huang Zijun, Chen Yunping. Non-communication fault locating of transmission line based on wavelet modulus maxima[J]. Electric Power Automation Equipment, 2005, 25(2): 10-14. [10] 尚海昆, 苑津莎, 王瑜, 等. 基于交叉小波变换和相关系数矩阵的局部放电特征提取[J]. 电工技术学报, 2014, 29(4): 274-281. Shang Haikun, Yuan Jinsha, Wang Yu, et al. Feature extraction for partial discharge based on cross-wavelet transform and correlation coefficient matrix[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 274-281. [11] 徐高, 龚庆武, 李勋, 等. 基于原子分解和行波自然频率的单端故障测距方法[J]. 电力自动化设备, 2014, 5(16): 133-138. Xu Gao, Gong Qingwu, Li Xun, et al. Single-terminal fault location based on atomic decomposition and natural frequency of traveling wave[J]. Electric Power Automation Equipment, 2014, 5(16): 133-138. [12] 徐高, 龚庆武, 李勋, 等. 一种利用行波自然频率的杆塔故障定位新方法[J]. 电力系统自动化, 2014, 5(4): 78-82, 102. Xu Gao, Gong Qingwu, Li Xun, et al. A novel method of tower fault location using traveling wave natural frequency[J]. Automation of Electric Power Systems, 2014, 5(4): 78-82, 102. [13] 李金泽, 李宝才, 翟学明. 一种考虑多次谐波的行波自然频率测距方法[J]. 电力系统保护与控制, 2016, 44(11): 9-15. Li Jinze, Li Baocai, Zhai Xueming. Single terminal fault location by natural frequencies of travelling wave considering multiple harmonics[J]. Power System Protection and Control, 2016, 44(11): 9-15. [14] Yu Huanan, Guo Shuxu, Qian Xiaohua. Compressed sensing: optimized overcomplete dictionary for underwater acoustic channel estimation[J]. China Communications, 2012, 9(1): 40-48. [15] 赵睿, 于华楠. 基于压缩传感的图像过完备字典设计[J]. 东北电力大学学报, 2012(4): 44-47. Zhao Rui, Yu Huanan. Compressed sensing based over-complete dictionary learning algorithm for images[J]. Journal of Northeast Dianli University, 2012(4): 44-47. [16] 黄会营, 庄淑君. 改进的正交匹配追踪图像快速重建算法[J]. 光学技术, 2014(6): 515-519. Huang Huiying, Zhuang Shujun. Image fast reconstruction algorithm based on improved orthogonal matching pursuit [J]. Optical Technique, 2014(6): 515-519. [17] 陈静, 符玲, 臧天磊, 等. 考虑系统谐波阻抗改变的谐波责任定量划分方法[J]. 电力自动化设备, 2016, 36(6): 215-222. Chen Jing, Fu Ling, Zang Tianlei, et al. Harmonic contribution determination considering system harmonic impedance change[J]. Electric Power Automation Equipment, 2016, 36(6): 215-222. |
|
|
|