|
|
AC Pollution Flashover Characteristics of Polluted Insulators under Salt Fog Conditions |
Guo Yujun1, Jiang Xingliang1, Meng Zhigao1, Li Yuanjun2, Gao Biao2 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400030 China; 2. State Grid Hangzhou Power Supply Company Hangzhou 310002 China |
|
|
Abstract The surface pollution of polluted insulators absorbs fog water and damps in the salt fog. Meanwhile, the salt in the salt fog deposits on insulators surface, which increases the surface conductivity and degrades the flashover performance of insulators. Insulators may flashover under lower voltage level even under operating voltage. This will threaten the safe and stable operation of the power grid. In this paper, experiments on three typical insulators, i.e. porcelain, glass and composite insulators, were conducted in different salt deposit densities (SDD) and fog water conductivities (γ20). The concept of additional salt deposit density (ASDD) was proposed to analyze the relationship among ASDD, SDD and fog water conductivity. The test results show that the ac flashover voltage decreases with the increases of both SDD and fog water conductivity, which has a negative exponential relationship with SDD while a linear relationship with fog water conductivity. The ASDD can be applied to analyze the combined effects of SDD and fog water conductivity. The relation between the fog flashover voltage and SDD and ASDD is a negative power exponent. The fog flashover can be treated as a special kind of pollution flashover.
|
Received: 20 October 2015
Published: 19 July 2017
|
|
|
|
|
[1] 蒋兴良, 舒立春, 孙才新. 电力系统污秽与覆冰绝缘[M]. 北京: 中国电力出版社, 2009. [2] 孙才新, 司马文霞, 舒立春. 大气环境与电气外绝缘[M]. 北京: 中国电力出版社, 2002. [3] 关志成, 刘瑛岩, 周远翔, 等. 绝缘子及输变电设备外绝缘[M]. 北京: 清华大学出版社, 2006. [4] 金立军, 张达, 段绍辉, 等. 基于红外与紫外图像信息融合的绝缘子污秽状态识别[J]. 电工技术学报, 2014, 29(8): 309-318. Jin Lijun, Zhang Da, Duan Shaohui, et al. Recogni- tion of contamination grades of insulators based on IR and UV image information fusion[J]. Transactions of China Electrotechnical Society, 2014, 29(8): 309- 318. [5] 罗凌, 张福增, 王黎明, 等. 高压直流瓷和玻璃绝缘子金属附件电解腐蚀试验方法[J]. 电工技术学报, 2015, 30(9): 104-112. Luo Ling, Zhang Fuzeng, Wang Liming, et al. Test methods for hardware electrolytic corrosion of porcelain and glass insulators on HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2015, 30(9): 104-112. [6] 张志劲, 蒋兴良, 孙才新. 染污绝缘子串直流污闪放电模型及验证[J]. 电工技术学报, 2009, 24(4): 36-41. Zhang Zhijing, Jiang Xingliang, Sun Caixin. DC pollution flashover model and its validation of polluted insulator strings[J]. Transactions of China Electrotechnical Society, 2009, 24(4): 36-41. [7] 黄道春, 李晓彬, 徐涛, 等. 蒸汽雾中悬式绝缘子表面污层饱和附水量研究[J]. 高电压技术, 2014, 40(11): 3349-3356. Huang Daochun, Li Xiaobin, Xu Tao, et al. Saturated absorption of water quantity on the pollution layer of suspension insulator surface in steam fog[J]. High Voltage Engineering, 2014, 40(11): 3349-3356. [8] 杨翠茹, 杨帅, 唐铭骏, 等. 较低湿度下含糖污秽绝缘子放电特性[J]. 电工技术学报, 2015, 30(10): 346-353. Yang Cuiru, Yang Shuai, Tang Mingjun, et al. Discharge mechanism of polluted insulator with glucose under low humidity[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 346-353. [9] Dong B, Jiang X, Zhang J, et al. Effect of environment factors on AC flashover performance of 3 units of polluted insulator strings under natural fog condition[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21(4): 1926-1932. [10] Jiang X, Dong B, Hu Q, et al. Effect of ultrasonic fog on AC flashover voltage of polluted porcelain and glass insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(2): 429-434. [11] Jiang X, Zhao S, Xie Y, et al. Study on fog flashover performance and fog-water conductivity correction coefficient for polluted insulators[J]. IET Gener- ation, Transmission and Distribution, 2013, 7(2): 143-153. [12] 王绥瑜, 宋思齐, 陈钦柱, 等. 高海盐污秽下悬式绝缘子闪络电压特性试验[J]. 广东电力, 2015, 28(4): 95-97. Wang Suiyu, Song Siqi, Chen Qinzhu, et al. Experiment on characteristic of flashover voltage of suspension insulator under sea-salt pollution[J]. Guangdong Electric Power, 2015, 28(4): 95-97. [13] Chemey E A, Beausejour Y, Cheng T C, et al. The AC clean-fog test for contaminated insulators[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(3): 604-613. [14] Arai N. AC fog withstand test on contaminated insulator by steam fog[J]. IEEE Transactions on Power Apparatus and Systems, 1982, 101(11): 4316-4323. [15] Lambeth P J. Laboratory tests to evaluate HVDC wall bushing performance in wet weather[J]. IEEE Transactions on Power Delivery, 1990, 5(4): 1782- 1793. [16] IEC 60507 Artificial pollution tests on high voltage insulators to be used on AC systems[S]. 1991. [17] 全国绝缘子标准化技术委员会. GB/T 4585—2004交流系统用高压绝缘子的人工污秽试验[S]. 北京: 中国标准出版社, 2004. [18] 蒋兴良, 黄俊, 董冰冰, 等. 雾水电导率对输电线路交流电晕特性的影响[J]. 高电压技术, 2013, 39(3): 636-641. Jiang Xingliang, Huang Jun, Dong Bingbing, et al. Influence of fog water conductivity on AC corona characteristics of transmission line[J]. High Voltage Engineering, 2013, 39(3): 636-641. [19] 李源军. 雾中输电线路绝缘子交流放电特性及闪络过程研究[D]. 重庆: 重庆大学, 2014. [20] 张志劲, 张东东, 刘小欢, 等. 污秽成分对LXY4- 160绝缘子串交流闪络特性的影响[J]. 电工技术学报, 2014, 29(4): 298-305. Zhang Zhijing, Zhang Dongdong, Liu Xiaohuan, et al. Effect of pollution compositions on the AC flashover performance of LXY4-160 suspension glass insulator string[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 298-305. [21] Baker A C, Farzeneh M, Gorur R S, et al. Selection of insulators for AC overhead lines in north America with respect to contamination[J]. IEEE Transactions on Power Delivery, 2008, 24(3): 1633-1641. [22] Ramos G N, Campillo MTR, Naito K. A study on the characteristics of various conductive contaminants accumulated on high voltage insulators[J]. IEEE Transactions on Power Delivery, 1993, 8(4): 1842- 1850. [23] Topalis F V, Gonos I F, Stathopulos I A. Dielectric behaviour of polluted porcelain insulators[J]. IEEE Proceedings-Generation, Transmission and Distribution, 2001, 148(4): 269-274. [24] Zhang C, Wang L, Guan Z, et al. Pollution flashover performance of full-scale ±800kV converter station post insulators at high altitude area[J]. IEEE Transa- ctions on Dielectrics and Electrical Insulation, 2013, 20(3): 717-726. |
|
|
|