|
|
Impact of Gate-Loop Parameters on the Switching Behavior of SiC MOSFETs |
Wang Xudong, Zhu Yicheng, Zhao Zhengming, Chen Kainan |
State Key Lab of Control and Simulation of Power Systems and Generation Equipments Department of Electrical Engineering Tsinghua University Beijing 100084 China |
|
|
Abstract The switching behavior of Silicon Carbide (SiC) MOSFETs is susceptible to the parasitic elements in the system. It manifests non-ideal characteristics of the power pulses, and further limits the system reliability and efficiency. The relationship among the control pulse, the drive pulse and the power pulse is analyzed. Two parameters dv/dt and di/dt are extracted as two critical factors affecting the switching behavior of SiC MOSFETs. The impacts of the gate-loop parameters on dv/dt and di/dt are analyzed theoretically and verified through PSpice simulation and experiments. Furthermore, several transient control methods based on the gate-loop parameters are compared, as a guideline for the control of the switching behavior of SiC MOSFETs in real applications.
|
Received: 05 April 2017
Published: 19 July 2017
|
|
|
|
|
[1] Yan Q, Yuan X, Geng Y, et al. Performance evaluation of split output converters with SiC MOSFETs and SiC schottky diodes[J]. IEEE Transa- ctions on Power Electronics, 2017, 32(1): 406-422. [2] 梁美, 郑琼林, 可翀, 等. SiC MOSFET、Si CoolMOS和IGBT的特性对比及其在DAB变换器中的应用[J]. 电工技术学报, 2015, 30(12): 41-50. Liang Mei, Zheng Trillion Q, Ke Chong, et al. Performance comparison of SiC MOSFET, Si Cool- MOS and IGBT for DAB Converter[J]. Transactions of China Electrotechical Society, 2015, 30(12): 41-50. [3] Yi P, Murthy P K S, Wei L. Performance evaluation of SiC MOSFETs with long power cable and induction motor[C]//IEEE Energy Conversion Congress and Exposition (ECCE), 2016: 1-7. [4] Biela J, Schweizer M, Waffler S, et al. SiC versus Si—evaluation of potentials for performance improve- ment of inverter and DC-DC converter systems by SiC power semiconductors[J]. IEEE Transactions on Industrial Electronics, 2011, 58(7): 2872-2882. [5] 赵争鸣, 白华, 袁立强. 电力电子学中的脉冲功率瞬态过程及其序列[J]. 中国科学E辑: 技术科学, 2007, 37(1): 60-69. [6] Lewicki A. Dead-time effect compensation based on additional phase current measurements[J]. IEEE Transactions on Industrial Electronics, 2015, 62(7): 4078-4085. [7] Zhang Z, Wang F, Costinett D J, et al. Dead-time optimization of SiC devices for voltage source conver- ter[C]//IEEE Applied Power Electronics Conference and Exposition (APEC), 2015: 1145-1152. [8] 周娟, 陈映, 唐慧英, 等. 基于脉冲调整的四桥臂逆变器死区补偿策略[J]. 电工技术学报, 2016, 31(3): 16-24. Zhou Juan, Chen Ying, Tang Huiying, et al. Dead- time compensation strategy for four-leg inverter based on pulse-tuning[J]. Transactions of China Electrotechical Society, 2016, 31(3): 16-24. [9] 罗剑波, 范伟, 彭凯. SiC MOSFET模块高频吸收电路研究[J]. 大功率变流技术, 2016, 31(5): 23-30. Luo Jianbo, Fan Wei, Peng Kai. High frequency snubber circuit for SiC MOSFET module[J]. High Power Converter Technology, 2016, 31(5): 23-30. [10] Torsæter B N, Tiwari S, Lund R, et al. Experimental evaluation of switching characteristics, switching losses and snubber design for a full SiC half-bridge power module[C]//IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, BC, Canada, 2016: 1-8. [11] 张强, 林维明. 一种最小应力的无源无损软开关方案[J]. 中国电机工程学报, 2016, 36(18): 4999-5008. Zhang Qiang, Lin Weiming. A novel lossless passive soft-switching cell with minimum stresses[J]. Proceedings of the CSEE, 2016, 36(18): 4999-5008. [12] Hua G, Lee F C. Soft-switching techniques in PWM converters[J]. IEEE Transactions on Industrial Elec- tronics, 1995, 42(6): 595-603. [13] Shahverdi M, Mazzola M, Schrader R, et al. Active gate drive solutions for improving SiC JFET switching dynamics[C]//Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 2013: 2739-2743. [14] Wittig B, Fuchs F W. Analysis and comparison of turn-off active gate control methods for low-voltage power MOSFETs with high current ratings[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1632-1640. [15] Chen Z, Boroyevich D, Burgos R. Experimental parametric study of the parasitic inductance influence on MOSFET switching characteristics[C]//The 2010 International Power Electronics Conference, Sapporo, Japan, 2010: 164-169. [16] Wang J, Chung H S, Li R T. Characterization and experimental assessment of the effects of parasitic elements on the MOSFET switching performance[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 573-590. [17] 巴腾飞, 李艳, 梁美. 寄生参数对SiC MOSFET栅源极电压影响的研究[J]. 电工技术学报, 2016, 31(13): 64-73. Ba Tengfei, Li Yan, Liang Mei. The effect of parasitic parameters on gate-source voltage of SiC MOSFET[J]. Transactions of China Electrotechical Society, 2016, 31(13): 64-73. [18] Chen K, Zhao Z, Yuan L, et al. The impact of nonlinear junction capacitance on switching transient and its modeling for SiC MOSFET[J]. IEEE Transa- ctions on Electron Devices, 2015, 62(2): 333-338. [19] Lemmon A, Mazzola M, Gafford J, et al. Instability in half-bridge circuits switched with wide band-gap transistors[J]. IEEE Transactions on Power Elec- tronics, 2014, 29(5): 2380-2392. [20] Sadik D P, Kostov K, Colmenares J, et al. Analysis of parasitic elements of SiC power modules with special emphasis on reliability issues[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2016, 4(3): 988-995. |
|
|
|