|
|
Short-Term Daily Load Curve Forecasting Based on Fuzzy Information Granulation and Multi-Strategy Sensitivity |
Li Bin1, Qin Fanglu1, Wu Yin2, Huang Jia1 |
1.Guangxi Key Laboratory of Power System Optimization and Energy Technology Guangxi University Nanning 530004 China; 2.Power Dispatch Control Center of Guangxi Power Grid Nanning 530023 China |
|
|
Abstract Due to the variable weather,the precision of short-term load forecasting curves and forecasting model can not fit the demand of power grid.This paper proposes a short-term daily load curve forecasting method based on fuzzy information granulation and multi-strategy sensitivity.The concept of global meteorology factor is introduced,and used to build up the meteorological granulating set.Spatial multiple regression and lag model combined with multi-strategy sensitivity analysis method is applied to establish the peak load prediction model in very complex situation.On the basis of modified k-means cluster method,the meteorology characteristic day is grasped,and then preliminary prediction curve is got.The paper judges the deformation probability intelligently and takes optimized correction necessarily;uses daily dynamic data flow to update the modelling parameters to forecast precisely.The proposed method is verified through an application to annual load data of the southern China area,the high accuracy proves its practicability,especially fitting for the complicated and variable weather condition in short time.
|
Received: 27 March 2016
Published: 12 May 2017
|
|
|
|
|
[1] 维克托·迈尔.大数据时代[M].盛杨燕,周涛,译.杭州:浙江人民出版社,2013. [2] 薛禹胜,赖业宁.大能源思维与大数据思维的融合(一)大数据与电力大数据[J].电力系统自动化,2016,40(1):1-8. Xue Yusheng,Lai Yening.Integration of macro energy thinking and big data tinking part one big data and power big data[J].Automation of Electric Power Systems,2016,40(1):1-8. [3] Q/CSG210007-2015.中国南方电网调度工作评价标准[S].广州:中国南方电网有限责任公司,2015. [4] 徐计,王国胤,于洪.基于粒计算的大数据处理[J].计算机学报,2015,38(8):1497-1517. Xu ji,Wang Guoyin,Yu Hong.Review of big data processing based on granular computing[J].Chinese Journal of Computers,2015,38(8):1497-1517. [5] Wi Y M,Joo S K,Song K B.Holiday load forecasting using fuzzy polynomial regression with weather feature selection and ajustment[J].IEEE Transactions on Power Systems,2012,27(2):596-603. [6] 吴荣福,黄文英,邓勇,等.福建电网夏季降温负荷研究分析[J].电气技术,2015(5):49-53. Wu Rongfu,Huang Wenying,Deng Yong,et al.Studies on temperature-lowering load of fujian power network[J].Electrical Engineering,2015(5):49-53. [7] Senjyu T,Mandal P,Uezato K,et al.Next day load curve forecasting using recurrent neural network structure[J].IET Proceedings-Generation Transmission and Distribution,2004,151(3):388-394. [8] Song K B,Ha S K,Park J W.Hybrid load forecasting method with analysis of temperature sensitivities[J].IEEE Transactions on Power Systems,2006,21(2):869-876. [9] Hong Tao,Gui Min,Baran M E.Modeling and forecasting hourly electric load by multiple linear regression with interactions[C]//2010 IEEE Power and Energy Society General Meeting,Minneapolis,2010:1-8. [10] Ahmadi S,Bevrani H,Jannaty H.A fuzzy inference model for short-term load forecasting[C]//2012 Second Iranian Conference on Renewable Energy and Distributed Generation,Tehran,2012:39-44. [11] 张素香,赵丙镇,王风雨,等.海量数据下的电力负荷短期预测[J].中国电机工程学报,2015,35(1):37-42. Zhang Suxiang,Zhao Bingzhen,Wang Fengyu,et al.Short-term power load forecasting based on big data[J].Proceedings of the CSEE,2015,35(1):37-42. [12] Hong Tao.Energy forecasting:past,present and future[J].Foresight,2013(12):43-48. [13] 刘荣,方鸽飞.改进Elman神经网络的综合气象短期负荷预测[J].电力系统保护与控制,2012,40(22):113-117. Liu Rong,Fang Gefei.Short-term load forecasting with comprehensive weather factors based on improved Elman neural network[J].Power System Protection and Control,2012,40(22):113-117. [14] 李培强,李慧,李欣然.基于灵敏度与相关性的综合负荷模型参数优化辨识策略[J].电工技术学报,2016,31(16):181-188. Li Peiqiang,Li Hui,Li Xinran.Optimized identification strategy for composite load model parameters based on sensitivity and correlation analysis[J].Transactions of China Electrotechnical Society,2016,31(16):181-188. [15] 谷云东,张素杰,冯君淑.大用户电力负荷的多模型模糊综合预测[J].电工技术学报,2015,30(23):110-115. Gu Yundong,Zhang Sujie,Feng Junshu.Multi-model fuzzy synthesis forecasting of electric powerloads for larger consumers[J].Transactions of China Electrotechnical Society,2015,30(23):110-115. [16] 徐久成.粒计算及其不确定信息度量的理论与方法[M].北京:科学出版社,2013. [17] 高赐威,李倩玉,苏卫华,等.短期负荷预测中考虑积温效应的温度修正模型研究[J].电工技术学报,2015,30(4):242-248. Gai Ciwei,Li Qianyu,Su Weihua,et al.Temperature correction model research considering temperature cumulative effect in short-term load forecasting[J].Transactions of China Electrotechnical Society,2015,30(4):242-248. [18] Swamy P,Raghuwanshi M M,Gholghate A.An improved approach for k-means using parallel processing[C]//IEEE International Conference on Computing Communication Control and Automation,2015. [19] 陈根永,史敬天,毛晓波,等.考虑温度积累效应的短期电力负荷预测方法研究[J].电力系统保护与控制,2009,37(16):24-28. Chen Genyong,Shi Jingtian,Mao Xiaobo,et al.Study on the method of short-term load forecasting considering the accumulation effect of temperature[J].Power System Protection and Control,2009,37(16):24-28. [20] GBT 13730-2002.地区电网调度自动化系统[S].2002. [21] Chang H,Lee Y,Yoon B.Dynamic near-term traffic flow prediction:system-oriented approach based on past experiences[J].IET Intelligent Transport Systems,2012,6(3):292-305. [22] 李霄,王昕,郑益慧,等.基于改进最小二乘支持向量机和预测误差校正的短期风电负荷预测[J].电力系统保护与控制,2015,43(11):63-69. Li Xiao,Wang Xin,Zheng Yihui.Short-term wind load forecasting based on improved LSSVM and error forecasting correction[J].Power System Protection and Control,2015,43(11):63-69. |
|
|
|