|
|
Series Arc Fault Identification Method Based on Wavelet Approximate Entropy |
Guo Fengyi, Li Kun, Chen Changken, Liu Yanli, Wang Xili, Wang Zhiyong |
Faculty of Electrical and Control Engineering Liaoning Technical University Huludao 125105 China |
|
|
Abstract A series arc fault generator was built according to UL1699. Experiments were carried out under different load conditions. Loop current waveforms with and without series arc fault were obtained. Firstly, the current signal was decomposed and reconstructed by wavelet transform. Then the irregular degrees of signals in each frequency band were quantified with approximate entropy algorithm, and the feature vectors of current signals were obtained. Finally, all the feature vectors were used as input variables of support vector machine (SVM). The series arc fault can be recognized by classifying those feature vectors with SVM. It is shown that the feature vectors obtained by wavelet approximate entropy algorithm can diagnose series arc fault.
|
Received: 24 October 2014
Published: 03 January 2017
|
|
|
|
|
[1] Muller P, Tenbohlen S. Characteristics of series and parallel low current arc faults in the time and frequency domain[C]//The 56th IEEE Holm Conference on Electrical Contacts, Charleston, SC, 2010: 1-7. [2] Brechtken D. Precentive arc fault protection[C]// IEEE/PES Transmission and Distribution Conference, USA, 2001, 1: 311-316. [3] Zeller P. A simple arc model for the simulation of the clearing time of drawn arcs with a commercial electronics simulation tool[C]//The 55th IEEE Holm Conference on Electrical Contacts, Vancouver, British Columbia, Canada, 2009: 67-74. [4] Andrea J, Schweitzer P, Tisserand E. A new DC and AC arc fault electrical model[C]//The 56th IEEE Holm Conference on Electrical Contacts, Charleston, SC, 2010: 210-215. [5] 张士文, 张峰, 王子骏, 等. 一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法[J].电工技术学报, 2014, 29(6): 290-302. Zhang Shiwen, Zhang Feng, Wang Zijun, et al. Series arc fault identification method based on energy produced by wavelet transformation and neural network[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 290-302. [6] 雍静, 桂小智, 牛亮亮, 等. 基于自回归参数模型的低压系统串联电弧故障识别[J]. 电工技术学报, 2011, 26(8): 213-219. Yong Jing, Gui Xiaozhi, Niu Liangliang, et al. Series arc fault identification in low voltage system based on autoregressive parameter model[J]. Transactions of China Electrotechnical Society, 2011, 26(8): 213-219. [7] 刘晓明, 赵洋, 曹云东, 等. 基于小波变换的交流系统串联电弧故障诊断[J].电工技术学报, 2014, 29(1): 10-17. Liu Xiaoming, Zhao Yang, Cao Yundong, et al. Series arc fault diagnosis based on wavelet transform in AC system[J]. Transactions of China Electro- technical Society, 2014, 29(1): 10-17. [8] 孙鹏, 董荣刚, 郑志成. 基于小波分析信号特征频段能量变比的故障电弧诊断技术研究[J]. 高压电器, 2010, 46(7): 46-50. Sun Peng, Dong Ronggang, Zheng Zhicheng. Arc fault diagnosis technology based on the analysis of energy variation of signal’s characteristic frequency band with wavelet transform[J]. High Voltage Apparatus, 2010, 46(7): 46-50. [9] 刘艳丽, 郭凤仪, 王智勇, 等. 基于信息熵的串联型故障电弧频谱特征研究[J]. 电工技术学报, 2015, 30(12): 488-495. Liu Yanli, Guo Fengyi, Wang Zhiyong, et al. Research on the spectral characteristics of seriesarc fault based on information entropy[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 488-495. [10] UL standard for safety for arc fault circuit inter- rupters[S]. 2ed. ANSI UL1699, 2008. [11] 张鹏, 李红斌. 一种基于离散小波变换的谐波分析方法[J]. 电工技术学报, 2012, 27(3): 252-259. Zhang Peng, Li Hongbin. A novel algorithm for harmonic analysis based on discrete wavelet trans- forms[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 252-259. [12] 张冠英,张晓亮,刘华,等. 小低压系统串联故障电弧在线检测方法[J]. 电工技术学报, 2016, 31(8): 109-115. Zhang Guanying, Zhang Xiaoliang, Liu Hua, et al. Online detection method for series arcing fault in low voltage system[J]. Transactions of China Electro- technical Society, 2016, 31(8): 109-115. [13] 行晋源, 李庆民, 丛浩熹, 等. 长距离输电线路潜供电弧弧根跳跃与弧长剧变的物理机制与仿真[J].电工技术学报, 2016, 31(12): 90-98. Xing Jinyuan, Li Qingmin, Cong Haoxi, et al. Physical mechanism and simulation method of the arc root jumping and arc length variation of the secondary arcs with long-distance[J]. Transmission Lines Transactions of China Electrotechnical Society, 2016, 31(12): 90-98. [14] 王智勇, 郭凤仪, 王海潮, 等. 矿用栓接电缆接头松动故障识别方法研究[J]. 煤炭学报, 2016, 41(4): 1045-1051. Wang Zhiyong, Guo Fengyi, Wang Haichao, et al. Research on identification methods of looseness fault in coal-mine bolted cable joint[J]. Journal of China Coal Society, 2016, 41(4): 1045-1051. [15] 符玲, 何正友, 麦瑞坤, 等. 近似熵算法在电力系统故障信号分析中的应用[J]. 中国电机工程学报, 2008, 28(28): 68-73. Fu Ling, He Zhengyou, Mai Ruikun, et al. Application of approximate entropy to fault signal analysis in electric power system[J]. Proceedings of the CSEE, 2008, 28(28): 68-73. [16] 栗然, 陆凤怡, 徐宏锐, 等. 基于局域波与近似熵的负荷分析方法[J].中国电机工程学报, 2010, 30(25): 51-58. Li Ran, Lu Fengyi, Xu Hongrui, et al. Novel approach for load analysis based on local wave and approximate entropy[J]. Proceedings of the CSEE, 2010, 30(25): 51-58. [17] 殷家敏,吉畅,罗建. 基于电容序列近似熵的消弧线圈接地选线方法[J]. 电力系统保护与控制, 2015, 43(17): 45-50. Yin Jiamin, Ji Chang, Luo Jian. Fault line selection approach of extinction coil based on capacitance sequence approximate entropy[J]. Power System Protection and Control, 2015, 43(17): 45-50. [18] 郭磊, 王瑶, 于洪丽, 等. 基于近似熵的磁刺激穴位脑功能网络构建与分析[J]. 电工技术学报, 2015, 30(10): 31-38. Guo Lei,Wang Yao, Yu Hongli, et al. Brain network based on approximate entropy of EEG under magnetic stimulation at acupuncture point[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 31-38. [19] 林丽, 赵德有. 基于局域波近似熵的声发射信号处理[J]. 大连理工大学学报, 2010, 50(1): 75-80. Lin Li, Zhao Deyou. Acoustic emission signal processing based on local wave and approximate entropy[J]. Journal of Dalian University of Tech- nology, 2010, 50(1): 75-80. [20] 薛浩然,张珂珩, 李斌, 等. 基于布谷鸟算法和支持向量机的变压器故障诊断[J]. 电力系统保护与控制,2015, 43(8): 8-13. Xue Haoran, Zhang Keheng, Li Bin, et al. Fault diagnosis of transformer based on the cuckoo search and support vector machine[J]. Power System Protection and Control, 2015, 43(8): 8-13. |
|
|
|