|
|
PMSM Parameters Identification Based on Recursive Least Square Method |
Xun Qian1, Wang Peiliang1, Li Zuxin1, Cai Zhiduan1 ,Qin Haihong2 |
1.School of Engineering Huzhou University Huzhou 313000 China; 2.Jiangsu Key Laboratory of New Energy Generation and Power Conversion Nanjing University of Aeronautics and Astronautics Nanjing 211100 China |
|
|
Abstract The permanent magnet servo control system must have features of parameter identification and parameter self-tuning to get better dynamic performance in a complex environment.Among them,the identification of inertia and load torque has the first priority.In this paper,the zero-order holder is introduced to discretize the motion equation of the motor.And the influence of the friction coefficient on the identification results is taken into consideration.The inertia,the load torque,and the friction coefficient can be identified simultaneously using the recursive least square method with a forgetting factor.In the Matlab/Simulink library model,the parameters cannot be modified on-line dynamically.So the improved PMSM model is proposed.Then the servo system simulation control model is built up.The constant and the variable parameters of dynamitic simulation are conducted.Finally,the experiments are carried out on the stm32 micro controller.The simulation and experimental studies show that the motor discrete model and the parameter identification method proposed in the paper have a certain accuracy and real-time property.The simulation results show the usefulness of the improved PMSM model in the variable parameter simulation study.
|
Received: 22 February 2015
Published: 18 September 2016
|
|
|
|
|
[1] Dutta R,Rahman M F.Design and analysis of an interior permanent magnet (IPM) machine with very wide constant power operation range[J].IEEE Transactions on Energy Conversion,2008,23(1):25-33. [2] Zhang Dongyu,Devore C E,Johnson E A.Response modification to improve the parameter identification of shear structures:an experimental verification[J].IEEE/ASME Transactions on Mechatronics,2013,18(6):1683-1690. [3] 孙昊,王茂海,齐霞.基于 PMU 实测数据的同步发电机参数在线辨识方法[J].电力系统保护与控制,2014,42(3):31-36. Sun Hao,Wang Maohai,Qi Xia.Synchronous generator parameters identification based on PMU data[J].Power System Protection and Control,2014,42(3):31-36. [4] Barcellona S,Ciccarelli F,Iannuzzi D,et al.Modeling and parameter identification of lithium-ion capacitor modules[J].IEEE Transactions on Sustainable Energy,2014,5(3):785-794. [5] 鲁文其,胡育文,梁骄雁,等.永磁同步电机伺服系统抗扰动自适应控制[J].中国电机工程学报,2011,31(3):75-81. Lu Wenqi,Hu Yuwen,Liang Jiaoyan,et al.Anti- disturbance adaptive control for permanent magnet synchronous motor servo system[J].Proceedings of the CSEE,2011,31(3):75-81. [6] 张占学.基于最小二乘法的 pH 值温度补偿模型[J].电气技术,2015,16(2):115-117. Zhang Zhanxue.Research of pH value temperature compensation module based on the least squares method[J].Electrical Engineering,2015,16(2):115-117. [7] 肖曦,许青松,王雅婷,等.基于遗传算法的内埋式永磁同步电机参数辨识方法[J].电工技术学报,2014,29(3):21-26. Xiao Xi,Xu Qingsong,Wang Yating,et al.Parameter identification of interior permanent magnet synchronous motors based on genetic algorithm[J].Transactions of China Electrotechnical Society,2014,29(3):21-26. [8] Niu Li,Xu Dianguo,Yang Ming,et al.On-line inertia identification algorithm for PI parameters optimization in speed loop[J].IEEE Transactions on Power Electronics,2015,30(2):849-859. [9] 王少威,万山明,周理兵,等.利用蚁群算法辨识PMSM伺服系统负载转矩和转动惯量[J].电工技术学报,2011,26(6):18-25. Wang Shaowei,Wan Shanming,Zhou Libing,et al.Identification of PMSM servo system’s load torque and moment of inertia by ant colony algorithm[J].Transactions of China Electrotechnical Society,2011,26(6):18-25. [10]徐东,王田苗,魏洪兴.一种基于简化模型的永磁同步电机转动惯量辨识和误差补偿[J].电工技术学报,2013,28(2):126-131. Xu Dong,Wang Tianmiao,Wei Hongxing.A simplified model based inertia identification algorithm with error compensation of permanent magnet synchronous motors[J].Transaction of China Electrotechnical Society,2013,28(2):126-131. [11]阳同光,桂卫华.基于粒子群优化神经网络观测器感应电机定子电阻辨识[J].电机与控制学报,2015,19(2):89-95. Yang Tongguang,Gui Weihua.Stator resistance identification for induction motor based on particle swarm optimization neural network observer[J].Electric Machines and Control,2015,19(2):89-95. [12]赵海森,杜中兰,刘晓芳,等.基于递推最小二乘法与模型参考自适应法的鼠笼式异步电机转子电阻在线辨识方法[J].中国电机工程学报,2014,34(30):5386-5394. Zhao Haisen,Du Zhonglan,Liu Xiaofang,et al.An on-line identification method for rotor resistance of squirrel cage induction motors based on recursive least square method and model reference adaptive system[J].Proceedings of the CSEE,2014,34(30):5386-5394. [13]Gautier M,Venture G.Identification of standard dynamic parameters of robots with positive definite inertia matrix[C]//2013 IEEE/RSJ International Conference on Intelligent Robots and Systems,Tokyo,2013,5815-5820. [14]杨宗军,王莉娜.表贴式永磁同步电机的参数在线辨识[J].电工技术学报, 2014,29(3):111-118. Yang Zongjun,Wang Lina.Online Multi-parameter identification for surface-mounted permanent magnet synchronous motors[J].Transactions of China Electrotechnical Society,2014,29(3):111-118. [15]Li Guoqi,Wen Changyun.Identification of wiener systems with clipped observations[J].IEEE Transactions on Signal Processing,2012,60(7):3845-3852. [16]王莉娜,杨宗军.SIMULINK中PMSM模型的改进及在参数辨识中的应用[J].电机与控制学报,2012,16(7):77-82. Wang Lina,Yang Zongjun.PMSM model’s reform in SIMULINK and application in parameters’ identification[J].Electric Machines and Control,2012,16(7):77-82.
|
|
|
|