|
|
The Distribution Characteristics and Factor Influence of the Ionized Field of DC Transmission Lines Under Haze Weather |
Yang Fan1, Dai Feng1, Luo Hanwu2, Liu Zehui3, Hui Yan1, Li Xianliang1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New TechnologyChongqing University Chongqing 400044 China; 2. State Grid East Inner Mongolia Electric Power Company Limited Hohhot 010020 China; 3. State Grid Henan Electric Power Corporation Research Institute Zhengzhou 450052 China |
|
|
Abstract The haze-prone areas are usually the places with limited transmission line corridors and large power loads. The performance of overhead transmission lines is under threat of the haze. The haze particulates around the DC transmission lines will be charged due to the ionized field, and the charged haze particulates will affect the electric field in the vicinity of the HVDC transmission lines. Based on the charging process of haze particulates and influence mechanism of haze on ionized field, this paper proposes the governing equation and calculation method of ionized field in presence of haze. Then the distributions of ionized field under different pollution levels are calculated, and the influence factors of ionized field under haze weather are analyzed. The results show that under the haze weather, the distribution trends of total electric field and ion current on the ground level are same as those under the normal weather, but the magnitudes are greater. Moreover, under the haze weather, the influence of haze on total electric field is greater, and the total electric field of the ground level increases with increasing pollution level, where the increasing degree of corona is the main reason.
|
Received: 14 December 2014
Published: 12 July 2016
|
|
|
|
|
[1] 刘振亚. 发展特高压电网破解雾霾困局[J].国家电网, 2014(3): 16-17. Liu Zhenya. Development of UHV power to control and handle the haze[J]. State Grid, 2014(3): 16-17. [2] 郭春义, 赵成勇, 王晶. 新型双馈入直流输电系统供电无源网络的运行特性研究[J]. 电工技术学报, 2012, 27(11): 211-218. Guo Chunyi, Zhao Chengyong, Wang Jing. Operation characteristic research on novel double-infeed HVDC system supplying passive network[J]. Transactions of China Electrotechnical Society, 2012, 27(11): 211-218. [3] 袁海燕, 傅正财. 基于有限元法的±800kV特高压直流输电线路离子流场计算[J]. 电工技术学报, 2010, 25(2): 139-146. Yuan Haiyan, Fu Zhengcai. Corona ionized field analysis of ±800kV HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 139-146. [4] 甄永赞, 崔翔, 罗兆楠, 等. 直流输电线路三维合成电场计算的有限元方法[J]. 电工技术学报, 2011, 26(4): 153-160. Zhen Yongzan, Cui Xiang, Luo Zhaonan, et al. FEM for 3D total electric field calculation near HVDC lines[J]. Transactions of China Electrotechnical Society, 2011, 26(4): 153-160. [5] 崔翔, 周象贤, 卢铁兵. 高压直流输电线路离子流场计算方法研究进展[J]. 中国电机工程学报, 2012, 32(36): 130-141. Cui Xiang, Zhou Xiangxian, Lu Tiebing. Recent progress in the calculation methods of ion flow field of HVDC transmission lines[J]. Proceedings of the CSEE, 2012, 32(36): 130-141. [6] Hara M, Hayashi N, Shiotsuki K, et al. Influence of wind and conductor potential on distributions of electric field and ion current density at ground level in DC high voltage line to plane geometry[J]. IEEE Transactions on Power Apparatus and Systems, 1982, PAS-101(4): 803-814. [7] Maruvada P S. Electric field and ion current environment of HVDC transmission lines: com- parison of calculations and measurements[J]. IEEE Transactions on Power Delivery, 2012, 27(1): 401- 410. [8] Lu T B, Feng H, Cui X, et al. Analysis of the ionized field under HVDC transmission lines in the presence of wind based on upstream finite element method[J]. IEEE Transactions on Magnetics, 2010, 46(8): 2939- 2942. [9] Comber M G, Johnson G B. HVDC field and ion effects research at project UHV: results of electric field and ion current measurements[J]. IEEE Transa- ctions on Power Apparatus and Systems, 1982, 101(7): 1998-2006. [10] Johnson G B. Electric fields and ion currents of a ±400kV HVDC test line[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(8): 2559- 2568. [11] 鲁非, 叶齐政, 林福昌, 等. 雨滴对高压直流输电线路地面离子流场的影响[J]. 中国电机工程学报, 2010, 30 (7): 125-130. Lu Fei, Ye Qizheng, Lin Fuchang, et al. Effects of raindrops on ion flow field under HVDC transmission lines[J]. Proceedings of the CSEE, 2010, 30(7): 125-130. [12] 赵永生, 张文亮. 雾对高压直流输电线路离子流场的影响[J]. 中国电机工程学报, 2013, 33(13): 194- 199. Zhao Yongsheng, Zhang Wenliang. Effects of fog on ion flow field under HVDC transmission lines[J]. Proceedings of the CSEE, 2013, 33(13): 194-199. [13] 朱易, 胡衡生, 张新英, 等. 南宁市大气颗粒物TSP, PM 10, PM 2.5污染水平研究[J]. 环境污染与防治, 2004, 26(3): 176-178. Zhu Yi, Hu Hengsheng, Zhang Xinying, et al. Research of pollution levels of the airborne particulate matter (TSP, PM 10 PM 2.5) in Nanning city[J]. Environment Pollution and Control, 2004, 26(3): 176-178. [14] 环境保护部. 环境空气质量指数AQI技术规定HJ 633—2012[S]. 北京: 中国环境科学出版社, 2012. [15] 孙玉荣. 电除尘器中颗粒物运动状态研究[D]. 保定: 河北大学, 2008. [16] 齐立强. 燃煤锅炉微细颗粒电除尘特性及电场逃逸机理的研究[D]. 保定: 华北电力大学, 2006. [17] 杨津基. 气体放电[M]. 北京: 科学出版社, 1983. [18] 王晶, 陈林华, 刘宇, 等. 电场对复合绝缘子积污特性影响的探究[J]. 高电压技术, 2011, 37(3): 585-593. Wang Jing, Chen Linhua, Liu Yu, et al. Effect of the electric field on the contamination accumulation characteristic of the insulators[J]. High Voltage Engineering, 2011, 37(3): 585-593. [19] 乔骥, 邹军, 袁建生, 等. 采用有限差分求解高压直流输电线路空间离子流场的新方法[J]. 电工技术学报, 2015, 30(6): 185-191. Qiao Ji, Zou Jun, Yuan Jiansheng, et al. A new finite difference based approach for calculating ion flow field of HVDC transmission lines[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 185- 191. [20] 胡琴, 吴执, 舒立春, 等. 交流电场下水滴对导线电晕特性的影响[J]. 电工技术学报, 2015, 30(18): 237-245. Hu Qin, Wu Zhi, Shu Lichun, et al. The corona characteristics of the conductor attached with water drops under AC electrical field[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 237- 245. [21] Takuma T, Ikeda T, Kawamoto T. Calculation of ion flow fields of HVDC transmission lines by the finite element method[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(12): 4802-4810. [22] Takuma T, Kawamoto T. A very stable calculation method for ion flow field of HVDC transmission lines[J]. IEEE Transactions on Power Delivery, 1987, 2(1): 189-198. [23] Zhen Y Z, Cui X, Lu T B, et al. High efficiency FEM calculation of the ionized field under HVDC transmission lines[J]. IEEE Transactions on Magne- tics, 2012, 48(2): 743-746. [24] 龙吉泽. 雾霾天气的形成、危害及治理[J]. 湖南农机, 2013(10): 38-39. [25] 刘红丽. 室内悬浮颗粒物浓度与粒径分布测量方法研究[D]. 武汉: 华中科技大学, 2009. [26] 邹岸新. 特高压直流输电线路下离子流场的仿真计算研究[D]. 重庆: 重庆大学, 2012. |
|
|
|