|
|
Stator Fault Diagnosis of Induction Motors Using the Optimal Wavelet Tree and Improved BP Neural Network |
Shi Liping, Tang Jiasheng, Wang Panpan, Han Li, Zhang Xiaolei |
China University of Mining and Technology Xuzhou 221008 China |
|
|
Abstract In order to accurately identify and eliminate the stator winding inter-turn short circuit fault of induction motors in time and guarantee the safe operation of electrical equipment, a novel method for fault diagnosis is proposed based on the optimal wavelet tree and predator search genetic algorithm (PSGA). Using the optimal wavelet tree combined with the characteristics of the fault current, the remnants of stator current signal is decomposed into different nodes after filtering out the fundamental component. As the input feature vectors of BP neural network, the energy range of each node represents the strongest intrinsic regularity of the fault signal. The BP neural network is used to solve the classification problem and the PSGA is taken to choose the initial weights and threshold of network, which will improve the speed and precision of network training. The final experimental results show that the proposed method can not only extract the better optimal feature vectors than wavelet package method but also accurately identify the three failure extent of motor stator inter-turn short circuit fault.
|
Received: 28 December 2013
Published: 30 December 2015
|
|
|
|
|
[1] Siddique A, Yadava G S, Singh B. A review of stator fault monitoring techniques of induction motors[J]. IEEE Transactions on Energy Conversion, 2005, 20(1): 106-114. [2] 王艳武, 杨立, 孙丰瑞. 异步电动机定子绕组匝间短路三维温度场计算与分析[J]. 中国电机工程学报, 2009 29(24): 84-90. Wang Yanwu, Yang Li, Sun Fengrui. Simulation and analysis of 3D temperature field for stator winding short-circuit in asynchronous motor[J]. Proceedings of the CSEE, 2009, 29 (24): 84-90. [3] 徐奇伟, 宋立伟, 崔淑梅. 感应电机矢量控制中转子参数自适应辨识[J]. 电工技术学报, 2011, 26(6): 81-87. Xu Qiwei, Song Liwei, Cui Shumei. Induction motor vector control based on adaptive identification of rotor parameters[J]. Transactions of China Electrotech- nical Society, 2011, 26(6): 81-87. [4] Bachir S, Tnani S, Trigeassou J C, et al. Diagnosis by parameter estimation of stator and rotor faults occurring in induction machines[J]. IEEE Transactions on Industrial Electronics, 2006, 53(3): 963-973. [5] 刘慧开, 杨立, 孙丰瑞. 异步电动机定子绕组槽内匝间短路早期故障的表面温升[J]. 电工技术学报, 2007, 22(3): 49-54. Liu Huikai, Yang Li, Sun Fengrui. Study of surface temperature rise of induction motor with stator winding inter-turn short circuit fault in slot[J]. Transactions of China Electrotechnical Society, 2007, 22(3): 49-54. [6] 张建文, 姚奇, 朱宁辉, 等. 异步电动机定子绕组的故障诊断方法[J]. 高电压技术, 2007, 33(6): 114-117. Zhang Jianwen, Yao Qi, Zhu Ninghui, et al. Method for diagnosing the stator winding faults in squirrel cage induction motor[J]. High Voltage Engineering, 2007, 33(6): 114-117. [7] 方芳, 杨士元, 侯新国, 等. 派克矢量旋转变换在感应电机定子故障诊断中的应用[J]. 中国电机工程学报, 2009, 29(12): 99-103. Fang Fang, Yang Shiyuan, Hou Xinguo, et al. Applica- tion of Park’s vector roating transformation for stator fault diagnosis in induction motors[J]. Proceedings of the CSEE, 2009, 29(12): 99-103. [8] 王攀攀, 史丽萍, 苗长新, 等. 利用骨干微粒群算法和 SVM 诊断电机定子故障[J]. 电机与控制学报, 2013, 17(2): 48-54. Wang Panpan, Shi Liping, Miao Changxin, et al. Diagnosing stator fault in motors by using bare-bones particle swarm optimization algorithm and SVM[J]. Electric Machines and Control, 2013, 17(2): 48-54. [9] Holland J. Adaptation in natural and artificial systems [M]. Ann Arbor: University of Michigan Press, 1992. [10] 张顶学. 遗传算法与粒子群算法的改进与应用[D]. 武汉: 华中科技大学, 2007. [11] 王萍萍, 陈进东, 潘丰. 采用捕食搜索策略的遗传算法改进[J]. 东南大学学报 (自然科学版), 2010(Z): 223-227. Wang Pingping, Chen Jindong, Pan Feng. Improvement of genetic algorithm based on predatory search strategy[J]. Journal of Southeast University ( Natural Science Edition), 2010(Z): 223-227. [12] Hecht Nielsen R. Theory of the back propagation neural nevwork[C]. IEEE International Joint Conference on Neural Networks, 1989: 593-605. [13] 严鸿, 管燕萍. BP神经网络隐层单元数的确定方法及实例[J]. 控制工程, 2009, 16(2): 100-102. Yan Hong, Guan Yanping. Method to determine the quantity of internal nodes of back propagation neural networks and its demonstration[J]. Control Engineering of China, 2009, 16(2): 100-102. [14] 向东阳, 吴正国, 胡文彪, 等. 盲信号处理在感应电动机复合故障诊断中的应用研究[J]. 电力系统保护与控制, 2010, 38(23): 103-106. Xiang Dongyang, Wu Zhengguo, Hu Wenbiao, et al. A composite fault diagnosis method of induction motor based on blind signal processing[J]. Power System Protection and Control, 2010, 38(23): 103-106. [15] 邱赤东, 薛征宇, 邵萍波, 等. 基于小波包变换的电机定子故障特征提取方法[J]. 电力系统保护与控制, 2010, 38(22): 52-56. Qiu Chidong, Xue Zhengyu, Shao Pingbo, et al. A feature extraction method for motor stator fault based on wavelet packets transform[J]. Power System Protection and Control, 2010, 38(22): 52-56. [16] Matlab小波分析与应用[M]. 2版. 北京: 国防工业出版社, 2007. [17] 唐炬, 谢颜斌, 周倩, 等. 基于最优小波包变换与核主分量分析的局部放电信号特征提取[J]. 电工技术学报, 2010, 25(9): 35-40. Tang Ju, Xie Yanbin, Zhou Qian, et al. Feature extraction for partial discharge signals based on the optimal wavelet packet basis transform and kernel principal component analysis[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 35-40. [18] 毛颖科, 关志成, 王黎明, 等. 基于BP人工神经网络的绝缘子泄漏电流预测[J]. 中国电机工程学报, 2007, 27(27): 7-12. Mao Yingke, Guan Zhicheng, Wang Liming, et al. Prediction of leakage current of outdoor insulators based on BP artificial neural network[J]. Proceedings of the CSEE, 2007, 27(27): 7-12. |
|
|
|