|
|
Optimal Design of a Linear Induction Motor Using Multi-Objective Efficient Global Optimization |
Gong Jinlin, Wang Xiuhe |
Shandong University Jinan 250061 China |
|
|
Abstract Integration of finite element models (FEM) in the optimal design process of electrical machine is complex and time-costly. The multi-objective efficient global optimization (MEGO) algorithm uses Kriging surrogate model as a guide on the optimization problem. The computationally expensive FEM is replaced by Kriging surrogate model, which can reduce the iterations of the FEM in the optimal design process. A Parallel strategy is integrated with MEGO in order to further save the time of optimization. A multi-objective optimization is achieved, by applying the MEGO algorithm to a 3D FEM of the linear induction motor. A 2D Pareto set composed of 3D FEM solutions is obtained with an affordable time-cost. This paper provides a new method for the optimal design of linear induction motor with FEM.
|
Received: 21 November 2013
Published: 30 December 2015
|
|
|
|
|
[1] Ye Y, Lu Q. Research and development of linear motor technology in China during recent decade[C]. The 8th Symposium on Linear Drives for Industry Applications (LDIA2011), Eindhoven, Netherlands, 2011. [2] Bianchi N. Electrical machine analysis using finite elements[M]. Taylor & Francis Group: CRC Press, 2005. [3] SelÇuk A H, Kürüm H. Investigation of end effects in linear induction motors by using the finite element method[J]. IEEE Transactions on Magnetics, 2008, 44(7): 1791-1795. [4] Wang G, Shan S. Review of meta-modeling techni- ques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4): 370-380. [5] 王雅玲, 徐衍亮, 刘西全. 双定子永磁同步发电机(I)——结构原理及其响应面法设计[J]. 电工技术学报, 2011, 26(7): 167-172. Wang Yaling, Xu Yanliang, Liu Xiquan. Dual- permanent magnet synchronous generator(I)—schematic structure and design based on response surface method[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 167-172. [6] Schonlau M. Computer experiments and global optimization[D]. Waterloo: University of Waterloo, Ont., Canada, 1997. [7] Jones D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383. [8] 王红涛, 竺晓程, 杜朝晖. 基于Kriging代理模型的改进EGO算法研究[J]. 工程设计学报, 2009, 16(4): 266-270. Wang Hongtao, Zhu Xiaocheng, Du Zhaohui. Research on improved EGO algorithm based on Kriging surrogate model[J]. Journal of Engineering Design, 2009, 16(4): 266-270. [9] Kreuawan S. Modelling and optimal design in railway applications[D]. France: Ecole Centrale de Lille, 2008. [10] Gieras J. Linear induction drives[M]. London: Oxford Science Publications, 1994. [11] 叶云岳. 直线电机技术手册[M]. 北京: 机械工业出版社, 2005. [12] Vector fields software: 2D AC, 3D Electra/SS manuals. [13] 鲁军勇, 马伟明, 李朗如. 高速长初级直线感应电动机纵向边端效应研究[J]. 中国电机工程学报, 2008, 28(30): 73-78. Lu Junyong, Ma Weiming, Li Langru. Research on longitudinal end effect of high speed long primary double-sided linear induction motor[J]. Proceedings of the CSEE, 2008, 28(30): 73-78. [14] Gong J, Gillon F, Brochet P. Magnetic and thermal 3D finite element model of a linear induction motor[C]. IEEE Vehicle Power and Propulsion Conference (VPPC2010), Lille, France, 2010: 1-6. [15] Simpson T W, Poplinsk J D, Koch P N, et al. Metamodels for computer-based engineering design: survey and recommendations[J]. Engineering and Computers, 2001, 17(2): 129-150. [16] Kriging model toolbox, available online: http://www2. imm.dtu.dk/~hbn/dace/ |
|
|
|