|
|
Power System Multiple Saddle-Node Bifurcation Point and Its Characteristic Analysis |
Yi Tao, Wang Chengmin, Xie Ning, Zhang Yan |
Shanghai Jiaotong University Shanghai 200240 China |
|
|
Abstract The explicit expression of equilibrium solution curve is very important to the study of saddle-node bifurcation point. In this paper, the node voltage equations express as quadratic form through introducing branch current variables, and obtain the explicit expression of power system solutions curve which parameter is branch current. Then, describe the characteristics of saddle-node bifurcation. The dimension of saddle-node bifurcation point is same with the number of jacobian matrix zero eigenvalue by defining the dimension and jacobian matrix eigenvalue analysis. The multiple saddle-node bifurcation point is more close to the stability boundary of power system. We put forward the dimensionality reduction algorithm of multiple saddle-node bifurcation point. The simulation results show that the presented method is correct.
|
Received: 22 April 2011
Published: 30 October 2015
|
|
|
|
|
[1] 杨黎晖, 马西奎. 基于分岔理论的含双馈风电机组的电力系统电压稳定性分析[J]. 电工技术学报, 2012, 27(9): 1-8. Yang Lihui, Ma Xikui. Analysis on voltage stability of power system with doubly fed induction generator wind turbine based on bifurcation theory[J]. Transac- tions of China Electrotechnical Society, 2012, 27(9): 1-8. [2] Li Hongzhong, Cheng Haozhong, Zhu Zhenhua, et al. Review on application of bifurcation theory in power system voltage stability[J]. Relay, 2006, 34(2): 69-73. [3] 杨秀, 金红核, 郭晨吉, 等. 应用分岔理论分析SVC 对电力系统电压稳定性的影响[J]. 电力系统保护与控制, 2009, 37(7): 7-10. Yang Xiu, Jin Honghe, Guo Chenji, et al. The influence of SVC on voltage stability of power system based on bifurcation theory[J]. Power System Protection and Control, 2009, 37(7): 7-10. [4] 赵兴勇, 张秀彬, 苏小林. 电力系统电压稳定性研究与分岔理论[J]. 电工技术学报, 2008, 23(2): 87-95. Zhao Xingyong, Zhang Xiubin, Su Xiaolin. Voltage stability studies and bifurcation theory in power systems[J]. Transactions of China Electrotechnical Society, 2008, 23(2): 87-95. [5] 马兆兴, 万秋兰, 李洪美. 考虑极限诱导分岔的电压稳定研究[J]. 电力系统保护与控制, 2011, 39(20): 24-30. Ma Zhaoxing, Wan Qiulan, Li Hongmei. Research on voltage stability analysis of limit induced bifurcation [J]. Power System Protection and Control, 2011, 39(20): 24-30. [6] 胡泽春, 王锡凡. 基于最优乘子潮流确定静态电压稳定临界点[J]. 电力系统自动化, 2006, 30(6): 6-11. Hu Zechun, Wang Xifan. Determination of static voltage collapse critical point based on load flow method with optimal multiplier[J]. Automation of Electric Power System, 2006, 30(6): 6-11. [7] Dong Xiaoming, Liang Jun, Zhang Xueqing, et al. Computation of closest steady state voltage stability bifurcation using PSO approach[C]. 2012 IEEE Inno- vative Smart Grid Technologies-Asia (ISGT Asia), 2012: 1-4. [8] Feng Z, Ajjarapu V, Long B Z. Identification of voltage collapse through direct equilibrium tracing[J]. IEEE Transactions on Power Systems, 2000, 15(1): 342-349. [9] 王刚, 张雪敏, 梅生伟. 基于近似连续潮流的在线电压稳定分析[J]. 电力系统自动化, 2008, 32(11): 6-11. Wang Gang, Zhang Xuemin, Mei Shengwei. On-line voltage stability analysis based on approximate con- tinuation power flows[J]. Automation of Electric Power System, 2008, 32(11): 6-11. [10] 江伟, 王成山, 余贻鑫, 等. 直接计算静态电压稳定临界点的新方法[J]. 中国电机工程学报, 2006, 26(10): 1-5. Jiang Wei, Wang Chengshan, Yu Yixin, et al. A new method for direct calculating the critical point of static voltage stability[J]. Proceedings of the CSEE, 2006, 26(10): 1-5. [11] 刘永强, 严正, 倪以信, 等. 基于辅助变量的潮流方程二次转折分岔点的直接算法[J]. 中国电机工程学报, 2003, 23(5): 9-13. Liu Yongqiang, Yan Zheng, Ni Yixin, et al. An auxiliary-variable-based direct method for computing quadratic turning bifurcation points of power flow equations[J]. Proceedings of the CSEE, 2003, 23(5): 9-13. [12] 杨小煜, 周孝信. 基于极小扩张系统方法的静态电压稳定临界点计算[J]. 中国电机工程学报, 2009, 29(25): 32-36. Yang Xiaoyu, Zhou Xiaoxin. Calculation of the critical points of static voltage stability with minimally extended system method[J]. Proceedings of the CSEE, 2009, 29(25): 32-36. [13] 郭瑞鹏, 韩祯祥, 王勤. 电压崩溃临界点的非线性规划模型及算法[J]. 中国电机工程学报, 1999, 19(4): 14-17. Guo Ruipeng, Han Zhenxiang, Wang Qin. Nonlinear programming model & algorithm for point of collapse [J]. Proceedings of the CSEE, 1999, 19(4): 14-17. [14] 韦化, 丁晓莺. 基于现代内点理论的电压稳定临界点算法[J]. 中国电机工程学报, 2002, 22(3): 27-31. Wei Hua, Ding Xiaoying. An algorithm for determining voltage stability critical point based on interior point theory[J]. Proceedings of the CSEE, 2002, 22(3): 27-31. [15] Irisarri G D, Wang X, Tong J, et al. Maximum load ability of power systems using interior point non- linear optimization method[J]. IEEE Transactions on Power Systems, 1997, 12(1): 162-172. [16] 蒋平, 顾伟, 严伟佳, 等. 基于多参数分岔分析方法的多机系统动态负荷裕度研究[J]. 电工技术学报, 2007, 22(3): 107-114. Jiang Ping, Gu Wei, Yan Weijia, et al. Research on dynamic load margin of multi-machine power systems based on multi-parameter bifurcation analysis[J]. Transactions of China Electrotechnical Society, 2007, 22(3): 107-114. [17] 赵晋泉. 一种实用的二维参数静态稳定边界追踪方法[J]. 电力系统保护与控制, 2011, 39(11): 17-22. Zhao Jinquan. A practical two-parameter steady stability boundary tracing method[J]. Power System Protection and Control, 2011, 39(11): 17-22. [18] 陆启韶. 分岔与奇异性[M]. 上海: 上海科技教育出版社, 1995. [19] 蔡大用, 白峰杉. 高等数值分析[M]. 北京: 清华大学出版社, 2011. [20] 武际可, 周鹏. 非线性问题和分叉问题及其数值方法[J]. 力学与实践, 1994, 16(1): 1-8. Wu Jike, Zhou Peng. Nonlinear problems and bifurca- tion problems and numerical methods[J]. Mechanics and Practice, 1994, 16(1): 1-8. [21] 叶康生, 陆天天, 袁驷. 结构几何非线性分析中分叉失稳的直接求解[J]. 工程力学, 2011, 28(8): 1-8. Ye Kangsheng, Lu Tiantian, Yuan Si. Structure geometry nonlinear analysis of bifurcation buckling direct solution[J]. Engineering Mechanics, 2011, 28(8): 1-8. |
|
|
|