|
|
Voltage Flicker Measurement Based on Chirp-Z Transform |
Li Heming1, Kang Wei1, Yan Xiangwu1, Zhang Lixia2 |
1. North China Electric Power University Baoding 071003 China; 2. China University of Petroleum Dongying 257100 China |
|
|
Abstract Studying of the IEC flicker meter shows that the instantaneous flicker sensation level S can be calculated directly if the spectrums of fluctuating component of voltage are known. In this paper a novel flicker Measurement method is proposed. First, the square demodulation is used to obtain the fluctuating component of voltage, and then the Chirp-Z transform(CZT) is used to obtain the amplitude and the frequency of wave component, and final the instantaneous flicker sensation level S. To process the wave component by CZT can acquire precise spectrums without prolonging the sampling time and decrease the error produced by spectrum leakage. The IEC flicker meter and new method is compared in simulation and test. The result verified the correctness and efficiency of the theoretical prediction.
|
Received: 07 May 2008
Published: 12 February 2014
|
|
|
|
|
[1] IEEE Standard 519-1992. IEEE recommended practices and requirements for harmonic control in electrical power system[S]. 1993. [2] IEC 61000-3-5. Electromagnetic compatibility (EMC), Part 3: Limits-section 3: Limitation of voltage fluctuations and flicker in low-voltage power supply systems for equipment with rated current ≤16 A[S]. 1994. [3] IEC 61000-3-5. Electromagnetic compatibility (EMC). Part 3: Limits-section 5: Limitation of voltage fluctuations and flicker in low-voltage power supply systems for equipment with rated current greater than l6A[S]. 1994. [4] IEC 61000-3-7. Electromagnetic compatibility (EMC). Part 3: Limits-section 7: Limits assessment of emission limits for fluctuations loads in MV and HV power system[S]. 1994. [5] IEC publications prepared by technical committee.77 868(1986) flickermeter, functional and design specifications[S], 1986. [6] Emanuel A E, Peretto L. A simple lamp-eye-brain model for flicker observations[J]. IEEE Transactions on Power Delivery, 2004, 19(3): 1308-1313. [7] Peretto L, Rovati L, Salvatori G, et al. A measurement system for the analysis of the response of the human eye to the light flicker[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(4): 1384-1390. [8] Huang Jier Shyh, Hsieh Cheng Tao. Application of continuous wavelet transform for study of voltage flicker-generated signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 925-932. [9] Huang Shyh Jier, Lu ChenWen. Enhancement of digital equivalent voltage flicker measurement via continuous wavelet transform[J]. IEEE Transactions on Power Delivery, 2004, 19(2): 663-670. [10] Hernandez A, Mayordomo J G, Asensi R, et al. A new frequency domain approach for flicker evaluation of arc furnaces[J]. IEEE Transactions on Power Delivery, 2003, 18(2): 631-638. [11] Wu Chi Jui, Chen Yu Jen. A novel algorithm for precise voltage flicker calculation by using instantaneous voltage vector[J]. IEEE Transactions on Power Delivery, 2006, 21(3):1541-1548. [12] Wu C J, Fu T H. Effective voltage flicker calculation algorithm using indirect demodulation method generation[J]. IEE Proceedings Transmission and Distribution, 2003, 150(4): 493-500. [13] S Nuccio. A digital instrument for measurement of voltage flicker[C]. IEEE Instrumentation and Measure- ment Technology Conference, 1997: 281- 284. [14] Chen M T, Generation. Digital algorithms for measurement of voltage flicker[J]. IEE Proceedings Transmission and Distribution, 1997, 144(2):175-180. [15] IEC 61000-4-15. Testing and measurement techniques: flickermeter-functional and design specifications[S]. [16] 贾秀芳, 赵成勇, 胥国毅, 等. IEC闪变仪误差分析及改进设计[J]. 电工技术学报, 2006, 21(11):121-126. [17] He Bing, Cabestaing F Postaire, et al. Narrow-band frequency analysis for laser-based glass thickness measurement[J]. Instrumentation, 2005, 54(1): 222-227. [18] Rabiner L R, Schafer R W. The Chirp Z transform algorithm[J]. IEEE Transactions on Audio and Electroacoustics, 1969, 17(2):86-92. [19] 陈奎孚, 焦群英, 高小榕.提高FFT谱质量的一种新方法[J].振动、测试与诊断, 1998, 18(3):216-232. 作者简介 李和明 男, 1956年生, 教授, 博士生导师, 主要研究方向为电力电子与电力传动、大型发电机在线检测与故障诊断技术的研究。 康 伟 男, 1977年生, 博士研究生, 主要研究方向为电能质量监测。 (上接第208页) [18] 庞浩, 李东霞, 俎云霄, 等. 应用FFT进行电力系统谐波分析的改进算法[J]. 中国电机工程学报, 2003, 23(6): 50-54. [19] 胡海兵, 祁才君, 吕征宇. 一种基于非同步采样的FFT算法(英文)[J]. 中国电机工程学报, 2004, 24(12): 13-17. [20] 柴旭峥, 文习山, 关根志, 等. 一种高精度的电力系统谐波分析算法[J]. 中国电机工程学报, 2003, 23(9): 67-70. [21] 张介秋, 梁昌洪, 韩峰岩, 等. 介质损耗因数的卷积窗加权算法[J]. 电工技术学报, 2005, 20(3): 100-104. [22] Nuttall A H.Some windows with very good sidelobe behavior[J]. IEEE Transactions on, Acoustics, Speech, and Signal Processing, 1981, 29(1): 84-91. |
|
|
|