|
|
Research on the Spectral Characteristics of Series Arc Fault Based on Information entropy |
Liu Yanli,Guo Fengyi,Wang Zhiyong,Chen Changken,Li Ying |
Faculty of Electrical and Control Engineering Liaoning Technical University Huludao 125105 Liaoning Province China |
|
|
Abstract In the view of power supply safety problems influenced by series arc fault, a kind of analysis method of series arc fault spectral characteristic was put forward by the combination of wavelet packet entropy and short-time Fourier transform(STFT). Firstly, a low voltage series arc fault experiment platform was developed. A series of simulation experiments of typical loads were carried out. Secondly, the series arc fault current signal before and after arc burning stably was decomposed, restructured and normalized by using the frequency band energy decomposition technique of wavelet packet. Thirdly, the information entropy of reconstructed signal of each frequency band was calculated. By comparing the information entropy before and after the arc fault, the characteristic frequency band of current signal was 8-10.8KHz. Finally, the spectrum variation of the characteristic frequency band before and after the arc fault was obtained by STFT. When the unstable arc occurred, 8-10.8 KHz was still the arc fault characteristic frequency and frequency spectrum characteristics are still obvious. The results showed that it was feasible to study low-voltage series fault arc spectrum characteristics by wavelet packet and STFT.
|
Received: 10 August 2014
Published: 14 September 2015
|
|
|
|
|
[1] Carlos E Restrepo. Arc fault detection and discrimina- tion methods[C]. The 53rd IEEE Holm Conference, 2007: 115-122. [2] 蔡斌, 陈德桂, 吴锐, 等. 开关柜内部故障电弧的在线检测和保护装置[J]. 电工技术学报, 2005, 20(10): 83-87. Cai bin, Chen degui, Wu rui, et al. Online detecting and protection system for internal faults arc in switchgear[J]. Transactions of China Electrotechnical Society, 2005, 20(10): 83-87. [3] Goodman M. How ultrasound can detect electrical discharge non-invasively and help eliminate arc flash incidents[C]. IEEE Electrical Insulation Conference and Electrical Manufacturing Expo, Nashville, Ten- nessee, U. S. A, Sep. 24-27, 2007, 247-252. [4] Panetta S. Design of Arc Flash Protection System using Solid State Switch, Photo Detection, with Parallel Impedance[C]. Electrical Safety Workshop, 2013 IEEE IAS, Dallas, TX, U. S. A, March 11-15, 2013: 211-213. [5] 杨建红, 张认成, 杜建华. 基于多信息融合的故障电弧保护系统的应用研究[J]. 高压电器, 2007, 43(3): 194-196. Yang jianhong, Zhang rencheng, Du jianhua. Study on application of arcing protective system faults based on multiple information fusion[J]. High Voltage App- aratus, 2007, 43(3): 194-196. [6] Restrepo C E. Arc Fault Detection and Discrimination Methods[C]. The 53rd IEEE Holm Conference on Electrical Contacts, Pittsburgh, PA, U. S. A, Sep. 16-19, 2007: 115-122. [7] 姚秀, 汲胜昌, Luis Herrera, 等. 串联直流电弧特性及其在故障诊断中的应用[J]. 高压电器, 2012, 48(5): 2-4. Yao xiu, Ji shengchang, Luis Herrera, et al. Series DC arc characteristic study and the application in fault recgnition[J]. High Voltage Apparatus, 2012, 48(5): 2-4. [8] Michael Rabla, Etienne Tisserand, Patrick Schweitzer. Arc fault Analysis and localisation by cross-correla- tion in 270V DC[C]. The 59th IEEE Holm Conference on Electrical Contacts, Newport, RI, U. S. A, Sep. 22-25, 2013: 117-122. [9] James A. Momoh, Robbert Button. Design and analysis of aerospace DC arc faults using fast fourier transformationand artificial neural network[C]. Power Engineering Society General Meeting, 2003(2): 791-792. [10] 南京航天航空大学. 一种直流系统电弧故障在线检测方法和保护装置[P]. 中国专利, 103913663, 2014. Nanjing Aerospace University. An online fault arc detection method and protection device in DC system[P]. China patent, 103913663, 2014. [11] 缪希仁, 郭银婷, 唐金城, 等. 负载端电弧故障电压检测与形态小波辨识[J]. 电工技术学报, 2014, 29(3): 237-244. Miao Xiren, Guo Yinting, Zhang Liping, et al. Load Side Arc Fault Voltage Detection and Identification with Morphological Wavelet[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 237-244. [12] 廖水容, 张认成, 李夏河. 低压串联电弧故障电流高次谐波含有率试验[J]. 河南理工大学学报(自然科学版), 2013, 32(2): 179-182. Liao shuirong, Zhang rencheng, Li xiahe. Experiment on current high order harmonic ratio for series low voltage arc fault[J]. Journal of henan polytechnic university (Natural Science), 2013, 32(2): 179-182. [13] 马少华, 郭家稳. 低压串联故障电弧的识别方法[J]. 低压电器, 2013(9): 12-16. Ma shaohua, Guo jiawen. Identification method of low voltage series arc fault[J]. Low voltage electrical apparatus, 2013(9): 12-16. [14] 卢其威, 巫海东, 王肃坷, 等. 基于差值-均方根法的故障电弧检测的研究[J]. 低压电器, 2013(1): 6-10. Lu qiwei, Wu haidong, Wang suke, et al. Research on Arc-fault Detection Based on Difference-Root Mean Square Method[J]. Low voltage electrical apparatus, 2013(1): 6-10. [15] 张士文, 张峰, 王子骏. 一种基于小波变换能量与神经网络结合的串联型故障电弧辨识方法[J]. 电工技术学报, 2014, 29(6): 290-302. Zhang shiwen, Zhang feng, Wang ziju, et al. Series Arc Fault Identification Method Based on Energy Produced by Wavelet Transformation and Neural Network[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 290-302. [16] 付朝阳, 刘景林, 张晓旭. 双余度永磁无刷直流电机匝间短路故障诊断[J]. 电工技术学报, 2014, 29(1): 104-109. Fu Zhaoyang, Liu Jinglin, Zhang Xiaoxu. Research on inter-turn short circuit fault diagnosis of dual redundancy permanent magnet brushless DC motor[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 104-109. [17] 曲国庆, 党亚民, 章传银, 等. 基于M带小波包的GPS数据序列误差分析与特征信息提取[J]. 煤炭学报, 2008, 33(11): 1243-1247. Qu guoqing, Dang yamin, Zhang chuanyin, et al. Analysis and feature extraction of GPS data sequence based on M-band wavelet packet[J]. Journal of China coal society, 2008, 33(11): 1243-1247. [18] 雷振, 杨仁树, 陶铁军. 基于未确知测度理论的台阶爆破效果综合评价[J]. 煤炭学报, 2015, 40(2): 353-359. Lei zhen, Yang renshu, Tao tiejun. Comprehensive evaluation of bench blasting effect based on uncertainty measurement theory[J]. Journal of China coal society, 2015, 40(2): 353-359. [19] Rezek I A, Roberts S J. Stochastic complexity measures for physiological signal analysis[J]. IEEE Trans on Biomedical Engineering, 1998, 45(9): 1186-1191. [20] L. 科恩. 时-频分析理论与应用[M]. 西安: 西安交通大学出版社, 1998, 77-91. [21] UL standard for safety for arc fault circuit interrupters [S]. 2ed. ANSI UL1699, 2008. [22] Boggess A, Narcowich F J. A first course in wavelets with Fourier analysis[M]. Beijing: Publishing House of Electronics Industry, 2002. |
|
|
|