|
|
Influence of PLL on the Stability Analysis of VSC-MTDC and Parameter Selection |
Xiong Lingfei,Han Minxiao,Yao Shujun |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China |
|
|
Abstract Firstly, this paper presents the small signal model of VSC-MTDC, including converter, control system(measuring, inner loop/outer loop, PLL), AC system and DC lines. Secondly, the model validation is achieved in time domain by the comparison with an electromagnetic transient state model which is built based on PSCAD/EMTDC. Then, the impact of parameters of PLL, inner loop and outer loop on the stability of VSC-MTDC is quantitatively analyzed based on root locus method, which indicates that PLL has a significant influence on the stability of VSC-MTDC and cannot be ignored. At last, the stability ranges of each parameter are defined.
|
Received: 21 November 2014
Published: 14 September 2015
|
|
|
|
|
[1] 李响, 韩民晓. 海上风电串联多端VSC-HVDC协调控制策略[J]. 电工技术学报, 2013, 28(5): 42-48, 57. Li Xiang, Han Minxiao. A coordinated control strategy of series multi-terminal VSC-HVDC for offshore wind farm[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 42-48, 57. [2] 陈霞, 林卫星, 孙海顺, 等. 基于多端直流输电的风电并网技术[J]. 电工技术学报, 2011, 26(7): 60-67. Chen Xia, Lin Weixing, Sun Haishun, et al. LCC- MTDC technology for wind farms integration[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 60-67. [3] Gemmell B, Dorn J, Retzmann D, et al. Prospects of multilevel VSC technologies for power transmission[C]. IEEE/PES Transmission and Distribution Conference and Exposition, 2008: 1-16. [4] 汤广福, 贺之渊, 庞辉. 柔性直流输电工程技术研究、应用及发展[J]. 电力系统自动化, 2013, 37(15): 3-14. Tang Guangfu, He Zhiyuan, Pang Hui. Research, application and development of VSC-HVDC enginee- ring technology[J]. Automation of Electric Power Systems, 2013, 37(15): 3-14. [5] Van der Meer A A, Hendriks R L, Kling W L. Combined stability and electro-magnetic transients simulation of offshore wind power connected through multi-terminal VSC-HVDC[C]. IEEE Power and Energy Society General Meeting, Minneapolis, 2010: 1-7. [6] Liu S, Xu Z, Hua W, et al. Electromechanical transient modeling of modular multilevel converter based multi- terminal HVDC systems[J]. IEEE Transactions on Power Systems, 2013, 29(1): 72-83. [7] 吴俊宏, 艾芊, 章健, 等. 基于多代理技术的VSC-MTDC控制系统[J]. 电力系统自动化, 2009, 33(19): 85-89. Wu Junhong, Ai Qian, Zhang Jian, et al. A VSC-MTDC control system based on multi-agent technology[J]. Automation of Electric Power Systems, 2009, 33(19): 85-89. [8] 朱瑞可, 李兴源, 应大力. VSC-MTDC互联系统频率稳定控制策略[J]. 电网技术, 2014, 38(10): 2729- 2734. Zhu Ruike, Li Xingyuan, Ying Dali. A frequency stability control strategy for interconnected VSC-MTDC transmission system[J]. Power System Technology, 2014, 38(10): 2729-2734. [9] 罗永捷, 李耀华, 王平, 等. 多端柔性直流输电系统下垂控制P-V特性曲线时域分析[J]. 电工技术学报, 2014(S1): 408-415. Luo Yongjie, Li Yaohua, Wang Ping, et al. Time- domain analysis of P-V characteristic for droop control strategy of VSC-MTDC transmission system[J]. Transactions of China Electrotechnical Society, 2014(S1): 408-415. [10] 郭春义, 赵成勇, 王晶. 新型双馈入直流输电系统供电无源网络的运行特性研究[J]. 电工技术学报, 2012(11): 211-218. Guo Chunyi, Zhao Chengyong, Wang Jing. Operation characteristic research on novel double-infeed HVDC system supplying passive network[J]. Transactions of China Electrotechnical Society, 2012(11): 211-218. [11] Tang L, Ooi B T. Protection of VSC- multi-terminal HVDC against DC faults[C]. IEEE 33rd Annual Power Electronics Specialists Conference, 2002, 2: 719-724. [12] 郑超, 周孝信. 基于电压源换流器的高压直流输电小信号动态建模及其阻尼控制器设计[J]. 中国电机工程学报, 2006, 26(2): 7-12. Zheng Chao, Zhou Xiaoxin. Small signal dynamic modeling and damping controller designing for VSC based HVDC[J]. Proceedings of the CSEE, 2006, 26(2): 7-12. [13] Padiyar K R, Prabhu N. Modelling, control design and analysis of VSC based HVDC transmission systems[C]. 2004 International Conference on Power System Tech-nology, 2004, 1: 774-779. [14] 陈海荣, 徐政. 适用于VSC-MTDC系统的直流电压控制策略[J]. 电力系统自动化, 2006, 30(19): 28-33. Chen Hairong, Xu Zheng. A novel DC voltage strategy for VSC multi-terminal HVDC system[J]. Automation of Electric Power System, 2006, 30(19): 28-33. [15] Beerten J, Belmans R. Modeling and control of multi- terminal VSC HVDC systems[J]. Energy Procedia, 2012, 24(10): 123-130. [16] Dierckxsens C, Srivastava K, Reza M, et al. A distributed DC voltage control method for VSC MTDC systems[J]. Electric Power Systems Research, 2012, 82(1): 54-58. [17] Cole S, Beerten J, Belmans R. Generalized dynamic VSC MTDC model for power system stability studies[J]. IEEE Transactions on Power Systems, 2010, 25(3): 1655-1662. [18] Beerten J, Cole S, Belmans R. Modeling of multi- terminal VSC HVDC systems with distributed DC voltage control[J]. IEEE Transactions on Power Systems, 2013, 99: 1-9. [19] Kalcon G O, Adam G P, Anaya-Lara O, et al. Small- signal stability analysis of multi-terminal VSC-based DC transmission systems[J]. IEEE Transactions on Power Systems, 2012, 27(4): 1818-1830. [20] Chaudhuri N R, Majumder R, Chaudhuri B. System frequency support through multi-terminal DC (MTDC) grids[C]. IEEE Power and Energy Society General Meeting (PES), 2013: 1-1. [21] Yazdani A, R Iravani. Voltage-sourced con- verters in power systems[M]. New Jersey: John Wiley & Sons, 2010. [22] IEEE Standards Board. IEEE Std 1204—1997, IEEE Guide for Planning DC Links Terminating at AC Loca- tions Having Low Short-Circuit Capacities[S]. 1997. [23] Jovcic D, Pahalawaththa N, Zavahir M. Analytical modelling of HVDC-HVAC systems[J]. IEEE Transac- tions on Power Delivery, 1999, 14(2): 506-511. [24] Karawita C. HVDC interaction studies using small signal stability assessment[D]. Winnipeg: Univeristy of Manitoba, 2009. [25] 胡寿松. 自动控制原理[M]. 北京:科学出版社, 2007. |
|
|
|