|
|
Design of Electromagnetic Ultrasonic Scanning Device and Its Control System |
Liu Suzhen1, Wang Chenguang1, Zhang Chuang1, Jin Liang |
1. Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Advanced Electrical Engineering and Energy Technology Tianjin Polytechnic University Tianjin 300387 China |
|
|
Abstract The electromagnetic ultrasonic technology is a non-contact measurement, it could detect specimen at high temperature, high speed, surface roughness and other harsh conditions, without coupling medium or pretreating the specimen. The electromagnetic ultrasonic scanning device is designed in this paper. The probe can be moved in x, y direction with step-scan, while the height of the probe can be adjusted. Therefore, the scanning device could control the scanning trace of the probe. In order to track scanning aluminum plates quickly and accurately for scanning device, the stepper motor control system based on single chip microcomputer is designed, it could adjust the probe’s scanning speed and scanning direction in real-time. The probe could uniform scanning, and the ladder up speed method is used to precisely control the move distance, enabling the probe positioning.
|
Received: 10 September 2014
Published: 29 June 2015
|
|
|
|
|
[1] 美国无损检测学会. 美国无损检测手册(超声卷) [M]. 北京: 世界图书出版公司, 1996. [2] Ogi H. Field dependence of coupling efficiency between electromagnetic field and ultrasonic bulk waves[J]. J. App1. Phys., 1997, 82(8): 3940-3949. [3] Ribichini R, Cegla F, Nagy P B, et al. Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media[J]. IEEE Transactions on Ultrasonics, 2010, 57(12): 2808-2817. [4] Dhayalan R, Balasubramaniam K. A hybrid finite element model for simulation of electromagnetic acoustic transducer (EMAT) based plate waves[J]. NDT&E International, 2010, 43(6): 519-526. [5] Hao Kuansheng, Huang Songling, Zhao Wei, et al. Analytical modelling and calculation of pulsed magnetic field and input impedance for EMATs with planar spiral coils[J]. NDT&E International, 2011(44): 274- 280. [6] 翟国富, 汪开灿, 王亚坤, 等. 螺旋线圈电磁超声换能器解析建模与分析[J]. 中国电机工程学报, 2013, 33(18): 147-154. Zhai Guofu, Wang Kaican, Wang Yakun, et al. Analy- tical modeling and analysis of electromagnetic acoustic transducers with spiral coils[J]. Proceedings of the CSEE, 2013, 33(18): 147-154. [7] 刘素贞, 张闯, 金亮, 等. 电磁超声换能器的三维有限元分析. 电工技术学报, 2013, 28(8): 7-12. Liu Suzhen, Zhang Chuang, Jin Liang, et al. 3D finite element analysis of electromagnetic ultrasonic trans- ducers[J]. Transactions of China Electrotechnical Society, 2013, 28(8): 7-12. [8] 蔡智超, 刘素贞, 金亮, 等. 电磁声发射—电磁超声的复合检测原理及激励线圈设计[J]. 电工技术学报, 2013, 28(6): 28-33. Cai Zhichao, Liu Suzhen, Jin Liang, et al. The principle of integrating electromagnetically induced acoustic emission with electromagnetic ultrasonic testing and design of exciting Coil[J]. Transactions of China Electrotechnical Society, 2013, 28(6): 28-33. [9] 宫佳鹏, 许霁, 邱玉, 等. 基于电磁超声导波的铝合金板材缺陷自动检测装置[J]. 仪表技术与传感器, 2011, (5): 78-81. Gong Jiapeng, XuJi, Qiu Yu, et al. Auto-detection device for Aluminum Alloy plate based on electro- magnetic acoustic guided wave[J]. Instrument Technique and Sensor, 2011, (5): 78-81. [10] 李智超. 基于洛伦兹力激励的电磁超声换能器建模及仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2010. [11] 王丽, 武新军, 汪玉刚. 基于电磁超声表面波干涉增强的钢板表面检测[J]. 无损检测, 2014, 36(4): 5-13. Wang Li, Wu Xinjun, Wang Yugang. Steel plate surface inspection based on interference enhancement of rayleighwaves generated by EMAT[J]. Nondes- tructive Testing, 2014, 36(4): 5-13. [12] Orzsua S, Baltazar A, Treesatayapun C. Adaptive control for lift-off effect of EMAT based on IF-THEN rules and ultrasound RMS value[C]. IEEE International Symposium on Robotic and Sensors Environments, 2013: 84-89. [13] Salzburger H J. EMAT's and its potential for modern NDE -State of the art and latest applications[C]. IEEE International Ultrasonics Symposium, 2009: 621-628. [13] Murayama R, Ayaka K. Evaluation of fatigue speci- mens using ematsfor nonlinear ultrasonic wave detec- tion[C]. IEEE Ultrasonics Symposium, 2007: 1836- 1839. [14] Murayama R, Ayaka K. Evaluation of fatigue specimens using ematsfor nonlinear ultrasonic wave detection[C]. IEEE Ultrasonics Symposium, 2007: 1836-1839. [15] 吴奎. 龙门式精密运动平台的滑模控制算法研究与实现[D]. 广州: 广东工业大学, 2012. [16] Zaferullah K Z, Bansode R, Pethe S. Speed control of stepper motor for collimator jaws positioning based on FPGA implementation[C]. IEEE International Con- ference on Circuits, Systems, Communication and Information Technology Applications, 2014: 353-357. |
|
|
|